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To stimulate progress in automating the reconstruction of @ural circuits, we organized
the rst international challenge on 2D segmentation of eleiton microscopic (EM)
images of the brain. Participants submitted boundary maps redicted for a test set of
images, and were scored based on their agreement with a consesus of human expert
annotations. The winning team had no prior experience with® images, and employed
a convolutional network. This “deep learning” approach hasince become accepted
as a standard for segmentation of EM images. The challenge Isacontinued to accept
submissions, and the best so far has resulted from cooperadin between two teams.
The challenge has probably saturated, as algorithms canngtrogress beyond limits set
by ambiguities inherent in 2D scoring and the size of the testlataset. Retrospective
evaluation of the challenge scoring system reveals that itas not suf ciently robust to
variations in the widths of neurite borders. We propose a sation to this problem, which
should be useful for a future 3D segmentation challenge.

Keywords: connectomics, electron microscopy, image segmentat ion, machine learning, reconstruction

1. INTRODUCTION

Electron microscopy (EM) has revealed novel facts about sysegred other subcellular structures

in the mammalian nervous systerB@urne and Harris, 20)2Serial EM has been most famously

used to reconstruct the connectivity of tlfi@aenorhabditis elegangrvous system\{/hite et al.,
1986; Jarrell et al., 20l More recent improvements in this technique have led to imggf much
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larger volumes of brain tissue, and exciting insights into A good scoring system is important for successful
invertebrate nervous system3uymbarger et al., 2013; Takemura crowdsourcing. Rand and information theoretic scores Haeen
etal., 2013; Kasthuri et al., 2Q;1&nd mammalian neural circuits proposed for segmentation of EM imageBu(aga et al., 2009;
(Briggman et al., 2011; Tapia et al., 2012; Helmstaedter et dlunez-lglesias et al., 201 T his paper compares the two scoring
2013; Kim et al., 20)4However, these recent studies also pointsystems using empirical data obtained from the challengd, an
to an important need for the development of new computationalexposes some of their strengths and weaknesses.
technology to aid the analysis of EM imagery of brain tissue. Since the ISBI'12 workshop, convolutional networks have
In a recent study, about 1000 neurons were reconstructedecome accepted as a standard computational tool for EM
from a mouse retina using 20,000 h of human laborimage segmentation. This is analogous to a similar acceptanc
(Helmstaedter et al., 20).3In spite of this great e ort, the of deep convolutional networks (also known as “deep leagf)in
reconstructed retinal volume was just 0.1 mm on each sidly, onas the leading approach to visual object recognition, which wa
large enough to encompass the smallest types of retinal neuroririggered by the ImageNet challengérizhevsky et al., 20)3
This study employed semiautomated methods, using advanceslin the fall of 2012, an algorithm based on a deep convolutiona
machine learning to automate most of the reconstructidni( neural network won the competition by a signi cant margin,
et al., 2010p Without the automation, the reconstruction would dropping the existing error rate from 25.8% (in 2011) to only
have required 10-100 more human e ort. To reconstruct 16.4%. This result made a real impact in the eld of image and
larger volumes, it is critical to improve the accuracy of cortgou  object recognition and is considered today a turning point in
algorithms and thereby reduce the amount of human labomachine vision Russakovsky et al., 2014
required by semiautomated systems. Ideally, the need foram To summarize, our contributions in this paper are:
interaction will be progressively eliminated, gradually leliveg

full m racing with eventual proof-readin fi . ; . .
ully automated tracing with eventual proof-reading of its for brain connectomics. This competition had the dual goal

results. . )
. . . of attracting new researchers to the eld of connectomics] a
To accelerate research in machine learning, we adopted a.

. . . improving the state-of-the-art for EM neuron segmentation.
crowdsourcing approach. Previously, research on serial EM . . o
. X ) A crowdsourcing structure, combining competition and
image analysis was mainly con ned to a few researchers who . . )
. f s . cooperation through a website and forum, promoting novel
were direct collaborators with neuroscientists who acedithe o . .y
. P ” algorithmic solutions from the participants.
images. We sought to attract talent from the “crowd” througke . - . .
. . : - Novel analysis and comparison of segmentation evaluation
rst serial EM image segmentation challenge. Net ix hasdiae - - 5 .
: : metrics, both from theoretical and empirical perspectives.
crowdsourcing approach to improve the accuracy of automated . . . .
. . . . A novel evaluation metric that overcomes problems in earlier
movie recommendatiodsand the Heritage Provider Network to . . . .
. . AR . . metrics which can be used in future 2D and 3D segmentation
improve prediction of unnecessary hospitalizations usinggpsti challenaes
dat®. Kaggle and other online marketplaces for such machine ges.
learning competitions have been established. Crowdsogiuas
also been employed to drive innovation in scienti ¢ problems,2. MATERIALS AND METHODS
such as biological sequence analysiskhani et al., 20)3and o
particle tracking in microscopy imageSiienouard et al., 20)4  2.1. Image Acquisition
Both competitive and cooperative mechanisms are used ifhe training data is a set of 30 consecutive images (5B12
crowdsourcing Bullinger et al., 2010 In the rst phase of pixels) from a serial section Transmission Electron Micrgsco
our challenge, competitive mechanisms were dominant. Thié&sSTEM) dataset of thdrosophila rst instar larva ventral
phase lasted for 4 months and ended with a workshop aterve cord (VNC;Cardona et al., 20)0The imaged volume
the International Symposium on Biomedical Imaging 2012measures 2 2 1.5 , with a resolution of 4 4 50
conference (ISBI'12). The winning entry, a deep convohdio nm/pixel. The images were captured using Legin@ulpway
network, attained over 2.5 improvement in accuracy relative et al., 200pto drive a FEI electron microscope equipped with
to the start of the challenge. Notably, the winning entry @m a Tietz camera and a goniometer-powered mobile grid stage,
from ateam (IDSIA) having no prior experience with EM imageswith a magni cation of 5600 binned at 2, which delivers
demonstrating our success in recruiting new talent from thethe 4 4 nm per pixel resolution. This imaging technique
crowd. delivers image volumes in a highly anisotropic manner, i.e.,
Seven teams publicly divulged their algorithms at thethe x- and y-directions have a high resolution, whereas the z
workshop, and this cooperative interaction commenced a sg¢tcordirection has a low resolution limited by physical sectionivfg
phase of the challenge. IDSIA released the results of progessihe tissue block. Electron microscopy produces the images as
the EM images by their winning entry, and another team (SClg projection of the whole section, so some of the membranes
built on these results to attain further improvement of overthat are not orthogonal to the cutting plane can appear
2.5 . This demonstrated the power of cooperative mechanismilurred.
in crowdsourcing algorithm design.

The rst public competition in the eld of image segmentation

2.2. Training and Test Data Sets
Ihttp:/inet ixprize.com/ The goal of the challenge was to nd algorithms for transfanm
2http://www.heritagehealthprize.com/ a grayscale EM imagéd-igure 1A) into an accurate boundary
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FIGURE 1 | Challenge datasets. (A) EM image of the ventral nerve cord of a larvddrosophila (B) Boundary map annotated by human experts(C) Segmentation
into neurite cross-sections.(D) The annotated dataset was split into training and test setsrad distributed publicly. Ground truth labels for the test sewere withheld
and used to evaluate the predictive performance of candidat algorithms.

map [Figure 1B), de ned as a binary image in which “1” indicates VASTS. The nal test labels were created as a consensus of the two
a pixel inside a cell, and “0” indicates a pixel at a boundaryest boundary maps. With that purpose, the labels from IA (H1)
between neurite cross sections. A boundary map is equivden were visually inspected and compared with the labels of DB.(H2)
a segmentation of the imagEigure 10). Whenever a disagreement (usually an object split or mergas) w

Boundary detection is challenging because many boundariésund, a manual correction was performed to guarantee the 3D
look fuzzy and ambiguous. Furthermore, only boundariesobject continuity.

between neurites should be detected, and those of intrdaell The training dataset was made publicly available, so that
organelles like mitochondria and synaptic vesicles should hgarticipants in the challenge could use it for developing
ignored. algorithms. From the test dataset, only the grayscale isvagee

We created two datasets, training and test, for evaluatingrade publicly available. The ground truth boundary maps of
performance on this taskm{gure 1D). These two datasets were the test images were kept private and only a secret portion of
30 grayscale images each, like the onkigfire 1A. Theground them were used to calculate the public test scéfigyre 1D).
truth boundary maps for the training images were created byhe participants submitted predicted boundary maps for the test
one coauthor (AC) who manually segmented each neurite dimages. The organizers scored the predicted boundary maps by
the training volume by manually marking its borders on eachcomparing them to the withheld ground truth.
2D plane. Although we refer to the human expert annotation as

ground truthfor simplicity as is common in machine learning, it 2 3, Measures of Segmentation Accuracy
isimportant to note that the human annotation may itself cait  gcoring boundary maps may sound straightforward, but is
errors refative to the true underlying biological realityh® non.-trivial. Ideally, the score of an algorithm should indie
ground truth boundary maps for the test images were created bys potential utility in practical applications. In connectonsic
two other coauthors (IA and DB), who independently segmented poundary detection algorithm is generally embedded in a

the whole test volume. AC and IA manually delineated thesemiautomated system that enables human experts to segment
neurite boundaries using the open-source software TrakEM2

(Cardonaetal., 20)2while DB used the freely-available software®https://software.rc.fas.harvard.edu/lichtman/vast/
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images by correcting mistakes of the algoriththklovskii et al., Several candidate non-local, region-based metrics have bee
2010; Kim et al., 2034 Therefore, each algorithm could be suggested to solve the problems associate with the naive pixel
scored by a “nuisance metric,” de ned as the amount of humarerror. Rand errothas been proposed as a metric of segmentation
e ort required for correction. However, the nuisance meticc  performance (Unnikrishnan et al., 2007; Arbelaez et al., 2011
cumbersome since it cannot be computed automatically, and @nd has also been used as an objective function for directly
depends on the details of the semiautomated system used and optimizing the performance of machine learning algorithms
the humans involved. Therefore, we sought some approximatioffuraga et al., 2009 Variation of information (Meila, 200%
to the nuisance metric that can be computed more easily. is closely related to Rand error (see Section S3), and has also
Human e ort is required to correct split errors, in which one been used as a segmentation metriobelaez et al., 20),1
neuron is incorrectly split into two segments, and merge esyo and as an objective functiorK(oeger et al., 20)3 Warping
in which two neurons are incorrectly merged into one segmenerror, based on digital topology, has been proposed as a metric
(Figure 2). Therefore, quantifying split and merge errors shouldand used as a cost function for machine learniggif et al.,
provide some approximation to the nuisance metric. 20103
Given a binary boundary labeling of an image, the easiest After evaluating all of these metrics and associated vegian
measure of segmentation performance to compute is a locéee Supplementary Material), we found empirically that spgciall
pixel-wise boundary prediction errop{xel error) Unfortunately, normalized versions of the Rand errarRand (Equation 3),
pixel error considers only whether or not a given pixel wasand Variation of InformationV'™ (Equation 6) best matched
correctly classied as a boundary pixel, without concern toour qualitative judgements of segmentation quality. We show
the ultimate e ect of that prediction on the resulting image empirically that of these two popular metric¥,?@"d is more
segmentation. For example, expanding, shrinking or traimgat robust thanV'"°, and for a theoretical analysis comparing these
a boundary between two neurons would not cause splits otwo evaluation metrics, please see Section S3.
mergers, but incur a large pixel error. Further, while a gap of . .
even a single pixel in the boundary between two neurons would-4- Foreground-restricted Rand Scoring
cause a merge error, it might only incur a very small pixel\/Ran
error as a fraction of the total number of pixels in the image Any boundary map can be transformed into a segmentation
The rst of these problem has been mitigated by the Berkelepy nding connected components. Suppose th&tis the
metrics (Martin et al., 200% however the second problem still predicted segmentation antlis the ground truth segmentation.
remains, ultimately leaving the pixel error family of metic De ne pj as the probability that a randomly chosen pixel
inadequate. belongs to segment in S and segment in T. This joint

FIGURE 2 | Top entries from the competition (Section 3.2) and co  operation (Section 3.3) phases of the challenge. (A)  Electron micrograph with overlaid
segmentation and corresponding boundary map(B) Boundary maps of the top 3 submissions at the time of ISBI'12(C) Boundary maps of the top 3 submissions in
the cooperation phase. Segmentation errors are marked by @aows colored based on the type of mistake: split (green), mege (red), omission (magenta), and addition
(blue). Scale baD 100 nm.
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p,robability distribution satis es the normalizagon coniin  border pixels in the ground truth boundary map from the

j i D 1. The marginal distributions D jbij is the  computation of Rand scores. The foreground-restricted esor
probability that a randomly chosen pixel Bgelongs to segmentvere empirically found to be less sensitive to small border
i in S and the marginal distributiort; D ipj is dened variations. We chose not to exclude border pixels in the predict
similarly. boundary map, because this modi cation might have made the

Two randomly chosen pixels belong tg the same segme8t inscore susceptible to exploitation by participants.
and the same segmentnwith probability pﬁ This quantity The organizers chose the foreground-restricted Rand fFesco

is expected to be larger wh&and T are more similar. We will @s the ocial ranking system of the competition. Code for
use it to de ne measures of similarity betwe&mand T, using computing this score was made available to the participants.

appropriate normalizations to constrain these measures to the'sing this code, participants could readily score their algyonis
range [0 1]. For example, on the training set. Participants could not easily score their

p algorithms on the test set, as the ground truth boundary maps f
i 5 the test set were kept private by the organizers. To help preserv
prfﬁ?d D P? (1)  impartiality of evaluation, the organizers (IA, ST, JS, AG| HIS)
k "k did not participate in the challenge.

oY

is the probability that two randomly chosen voxels belonghe t . . . Info
same segment 8§ given that they belong to the same segment ir2-2- Information Theoretic Scoring ~ V .
T. We will call this the Rand split score, because itis highezrwh After receiving many submissions, we decided to retrospelgtiv

there are fewer split errors. We also de ne the Rand mergessco€Valuate our scoring system by empirical means. Information
P theoretic scoring has been proposed as an alternative to Rand

i pﬁ scoring (Nunez-lglesias et al., 201l¥e decided to compare the
VRameD P? (2)  two scoring systems on all submissions.
K = The mu%al information 1.9 T/ D ij Pij 10gp;

as the probability that two randomly chosen voxels belondgiw t _ 151098 jtjlogt; is ameasure of similarity betwe&and
same segment ifi, given that they belong to the same segment inl - This can be used to de ne related measures of.s!mlllarlty tha
S The merge score is higher when there are fewer merge erroré® normalized to the range between 0 and 1. Dividing by the

For a single score that includes both split and merge erroes, wentropy H .S D i S logs yields the information theoretic
can use the weighted harmonic mean split score
P ; (9T
- DE info >
VRand D D 1] pﬁ (3) VSp“t D H(S (4)

«$CA )kt
the fraction of information inSprovided byT. Dividing byH . T/
We will de ne the Rand F-score as D 0.5, which weights yields the information theoretic merge score
split and merge errors equally. The valuesD 0 and D

1 correspond to the individual split and merge scores above. 1(ST)

More generally, one could chooselepending on which kind of merge™  H(T)
error is more time-consuming for humans to correct, or is reor
detrimental to the scienti c investigation. the fraction of information inT provided byS Both scores are

The split and merge scores can be interpreted as precision amén-negative and upper bounded by unity, due to well-known
recall in the classi cation of pixel pairs as belonging to then®  properties of mutual information. The weighted harmonic mean
segment (positive class) or di erent segments (negativesylas of the two scores is
We use the term “Rand” because the Rand F-score is closely
related to the Rand index, which was previously used to quantif vine o I(8T)
performance at clusteringland, 197)land image segmentation .1 JH(SC H(T)
(Unnikrishnan et al., 2007; Arbelaez et al., 20The Rand index
was also used as an objective function for machine learnfng e willreferto D 0.5 as the information theoretic F-score. The
image segmentatiouraga et al., 2009 values D Oand D 1 correspond to the individual split and

To compute the above scores, each boundary map waserge scores above. Other choices ohay be used if split and
transformed into a segmentation by regarding connectednerge errors have di ering importance.
components of “1”s as segments. In addition, we followed the The information theoretic F-score is closely related to the
convention that every “0” pixel was regarded as a segmenariation of information, which has been proposed as a metric
containing just one pixel. for clustering Meila, 200% and image segmentatiom\(belaez

One complication for scoring is that algorithms (and humans)et al., 201), and as an objective function for machine learning of
often di er in the widths they ascribe to the borders betweensegmentationk{roeger et al., 20)3For the sake of comparison,
cells. Such minor dierences are unimportant, and an ideakhe foreground-restricted information theoretic scoresiwn in
scoring system should be robust to them. Therefore, we drdu all the results presented here.

(6)
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3. RESULTS 3.2. Competition Yielded Over 2.5
] ] ' Improvement
3.1. Rankings at the Time of ISBI'12 Table 1 summarizes the results of the rst four months of

The rst column of Table 1gives the Rand scores of all 13 teamghe challenge, which we will call the “competition phase.”

who entered before ISBI'L2. Teams submitted multiple estrieThe challenge was announced starting on October 25, 2011
over time, so the best submission from each team before13BI' through publicity surrounding the 1SBI'12 conference, ehtai

is shown. Based on this ranking, IDSIA was declared the winnghe Fiji-lmageJ and ImageWorld lists, and the MICCAI Grand
at the ISBI'12 workshop. Challenges in Biomedical Image Analysi$eams immediately

The F-score is an aggregate of split and merge scor@ggan registering for the challenge and downloading theskts.
(Equation 3). These are plotted figure 3A to provide more  On January 11, 2012, no submission had yet been received,
information about algorithm performance~(gure 3Bshows the 5o the competition deadline was postponed from February
same values based on the information theoretic score). Ppel 1 to March 1. The rst submission was received from SCI
right hand corner corresponds to perfect performance. For then January 13, 2012. The organizers posted scores of all
teams that submitted probabilistic boundary maps, perforneancsubmissions on a leaderboard that was publicly accessie fr
is represented by a curve, each point of which corresponds e challenge website. Over the course of the competition
one value of the threshold used to obtain a deterministio@y-  phase, six dierent teams held rst place in the ranking.
valued) boundary map. For each of these teams, the values IDS|A took rst place on February 24, 2012, and held this
Table 1 are given for the location on the curve that achievedyosition until the competition deadline on March 1, 2012 (see
maximal F-score. Figures 4A,B.

For each non-IDSIA submission, there exists some point on  The leaderboard scores were computed using 10 images drawn
the IDSIA curve with superior split and merge scores. In thisrom the 30 images in the test set. Since participants received
sense, IDSIA dominated all other teams Table 1 However, multiple scores over the course of the competition, there was
there exists no single point on the IDSIA curve that is styictl e ectively some opportunity to train on the test set. To see
better than all other algorithms. whether overtraining had occurred, the scoresTable 1 were

The IDSIA entry was a deep convolutional netwofkiesan  computed using the remaining 20 images from the test set.
etal., 201p. This approach used “end-to-end learning,” meaningrigures 4C,Dshows that the scores on the 10 and 20 images are
that the raw image was fed directly to a complex patternndeed very similar.

classi er. Other teams also used machine learning approaches Before the ISBI'12 workshop, 32 out of 86 submissions were
but some relied heavily on hand-designed features, whiate wefrom 8 out of 13 teams with no prior publications in the area
used as inputs to a simple pattern classi er. In total, sevemgea of segmenting EM images. Seven out of the top 10 submissions,
provided information about their algorithms to the organige including the winning submission (IDSIA), came from these
and presented their work at the workshop. A brief descriptioninexperienced teams.

of each method can be found in the Supplementary Material. The winning submission (0.9440.012) scored 2.6closer to
perfect (1.0) than the rst submission (0.8540.022), showing
that substantial progress was achieved during the competitio
TABLE 1 | Best Rand and information theoretic scores of all teams and the phase. The di erence is statistically signi cant (Wilcoxogised
human experts using the undisclosed test set at ISBI. rank test,p < 0_0001)_ The Winning submission was 2.2
closer to perfect than the median score (0.8770.019) over

Rand Info
Method v v all submissions in the competition phase. This is also a
Human 1 Vs. consensus 0.997 0.001 0.997 0.001 statistically signi cant di erence (Wilcoxon signed rank&st,p <
human 2 vs. consensus 0971 0.003 0941 0.002 0.0036).
IDSIA 0.944 0.011 0.968 0.002
BlackEagles 0929 0.008 0916 0.003 3.3. Post-deadline Cooperation Yielded
MLL-ETH 0.927 0.008 0923 0.004 Over 2.5 Improvement
SCl 0.915 0.016 0.967 0.003 All 13 competition participants were invited to speak at the
CellPro ler 0.904 0.015 0.937 0.006 ISBI'12 workshop. Seven teams agreed to submit papers and
Harvard 0.892 0.017 0.947  0.004 gave presentations about their methods. This kicked o a new
COMPLEX 0.877 0.019 0.903 0.008 “cooperation phase” of the challenge in which many participants
ucL 0.860 0.020 0.939 0.005 publicly shared their results and software implementatiom. |
TSCCPP 0.843 0.012 0.838 0.006 particular, IDSIA publicly released the boundary maps of their
IMMI 0.826 0.022 0.862 0.008 winning entry.
CLP 0.809 0.018 0.846 0.005 Much of the cooperation happened through an online
Freiburg 0.800 0.026 0.825 0.005 discussion forur created for the challenge. There were 87
NIST 0.730 0.021 0.757 0.007 postings as of November 4, 2013. In the competition phase,

Mean and standard error are computed over 20 test images not used for the phiic “http://grand-challenge.org/
leaderboard. Shttps://groups.google.com/d/forum/em-segmentation-challenge2612
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FIGURE 3 | Merge vs. split scores for submissions prior to compet ition deadline. Upper right hand corner corresponds to perfect performance(A) Rand
scores of Equations (1, 2)(B) information theoretic scores of Equations (4, 5).

postings were mainly questions to the organizers. In thé.4. Robustness of Scoring to Border
cooperation phase, participants used the forum to share theN/griations
opinions, butalso their results and some times even the doele t on theoretical grounds, both Rand and information theoceti
used during the competition. scoring are closely related to the nuisance metric, and th ea
As of November 4, 2013, there were 185 submissionsther. Therefore, we expected similar rankings to emergen fro
and 22 teams listed on the leaderboardalfle 9. Apart the comparison, but this turned out not to be the case. Acaogdi
from the nine new teams, four teams from the competitionys Taple 1, IDSIA would still have been declared the winner at
phase remained active: IDSIA, SCI, BlackEagles and CLie ISBI'12 workshop by information theoretic scoring. Hewver,
Two new teams were combinations of individual teams andSCl would have moved up to second place and the di erence
since they used the probability maps made public by IDSIAbetween IDSIA and SClis not statistically signi cant. Blaekjles
it was agreed to include “IDSIA’ in their ocial group and MLL-ETH would have dropped from 2nd and 3rd place in
names. The top submission for instance (IDSIA-SCI) was #e Rand rankings to 7th and 6th in the information theoretic
combination of IDSIA boundary maps with SCI post-processingrankings. Such di erences cast doubt on the quality of both
The Rand F-score of IDSIA-SCI was 2.%loser to perfect scoring systems.
than IDSIA alone Table 2 rst column). This improvement Through visual inspection, we found that the boundary
was statistically signi cant (Wilcoxon signed rank tegt, < maps predicted by BlackEagles and MLL-ETH had markedly
0.0041). Interestingly, this gain was about the same as thaider borders than the boundary maps of other algorithms.
achieved by the competition phase. Only IDSIA-optree mad&Ve hypothesized that such border variations were the source
a signi cant improvement as well (Wilcoxon signed rank test,of the ranking di erences. We had already taken one step to
p < 0.05). improve the robustness of scoring to border variations, \Wwhic
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FIGURE 4 | Evolution of Rand score over time. No over tting. (A ) Competition phase prior to ISBI'12 workshop.(B) Cooperation phase. Individual submissions

are colored by team. The dotted blue line shows the best Rand®ore achieved by that date.(C,D) Score differences between private and public test datasets

was to compute both Rand and information theoretic scoresraft shows that the Rand and information theoretic rankings were
foreground-restriction (Section 2.4). We experimentedhwit  more similar to each other after border thinning. To quamtihis
further step to improve robustness, which was to thin the loed e ect, we measured Spearman's rank-order correlation betwee
of all submitted boundary maps in a way that was guaranteed tthe di erent rankings. The rank-order correlation betweenet
not merge objects. After this step, the borders in all bougdar Rand and information theoretic rankings increased fromQ0t&
maps were the same width (about one pixel). Then we compute@.94 after border thinning. Graphs of information theoretis.
foreground-restricted scores as before. InspectionTalble 2 Rand scores are provided kigure 5.
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TABLE 2 | Best Rand and information theoretic scores (before and after to the same ground truth used to score the computer algorithms
border thinning) of all teams and the human experts using the (Table 1andFigure 3). This suggests that the algorithms still fell
undisclosed test set as of November 4, 2013. short of human performance. Before border thinning, the top
Method vRand y/nfo yRand yinfo submission inTable 1was superior to H2. We were suspicious
(thinned) (thinned) of this nding because of a puzzling asymmetry in the scores

of the two human experts: H1 scores higher than H2. When
Humanlvs. 0997 0.001 0997 0001 0998 0001 0999 0001 we examined the human segmentations, we realized that H2
consensus had thicker borders than H1. Indeed, the H1 and H2 scores
Human 2 vs. 0.971 0.003 0.941 0.002 0.990 0.002 0.989 0.001 are more similar to each other after border thinnin@atﬂe a’
consensus and no algorithm is superior to H2. (H2 still scores lower

IDSIA-SCI 0.979 0.005 0.988 0.002 0979 0005 0988 0002 54 H1 relative to the ground truth consensus, because of an
IDSIA-optree  0.969  0.006 0.977 0.003 0.972 0.006 0.984 0.002  55ummetry in the procedure that created the consensus from H1
scl 0.966 0.006 0.984 0.002 0.968 0.006 0.984 0.002

and H2.)
IDSIA 0.944 0011 0969 0.002 0.978 0.004 0.988 0.001

According to Rand scoring after border thinningdble 2,
BlackEagles  0.930 0.009 0.941 0.003 0973 0005 0983 0002  the top algorithms are slightly inferior to H2. According to

MLL-ETH 0927 0.008 0926 0.003 0.968 0.006 0981 0.002 jnformation theoretic scoring after border thinning, the
Sbu 0.909 0.011 0.926 0004 0942 0008 0974 0003  g|gorithm scores are essentially statistically indistisable
CellProler 0904 0015 0937 0006 0915 0015 0958 0005  from H2. These results point to a limitation arising from theei
Coxlab 0.901 0.012 0.936 0006 0939 0012 0976 0003  of our test dataset, but also point to the success of the cigale
Harvard 0.892 0017 0944 0006 0.907 0.016 0.957 0.008  The algorithms have reached a level of accuracy where it will
CoMPLEX 0.877 0.019 0.903 0.008 0890 0.018 0.947 0005 now take much larger test datasets to distinguish measurable
MLA 0.875 0.016 0.885 0.004 0.916 0.016 0.964 0.004 improvements in accuracy.

ML 0.867 0016 0879 0006 0911 0016 0.958 0.003 We examined the di erences between H2 and the ground
ucL 0.860 0.020 0939 0005 0863 0020 0948 0005 truth consensus, and found that they are mainly due to
TSC+PP 0.843 0012 0.839 0006 0922 0013 0961 0005 ambiguities created by scoring the challenge in 2D. An example
cLp 0.839 0024 0885 0008 0869 0024 0940 0006 is shown inFigure 6. The red box shows a region where a cell
IMMI 0.826 0022 0.862 0.008 0.876 0020 0948 0005 membrane runs parallel to the sectioning plane and so appears
ICOS 0.809 0.018 0.838 0011 0883 0015 0936 0004 indistinct. The ambiguity of this region does not signi ciy
Freiburg 0.800 0.026 0.839 0.007 0.835 0.027 0.928 0006 changethe 3D interpretation. However, the ambiguity is seire
NIST 0.730 0021 0757 0007 0796 0020 0851 0006 2D, because it a ects whether two cross sections should be spli
Computer 0709 0024 0768 0012 0832 0022 0904 0007 Of merged.

Vision Jena To summarize, the score of a top algorithm relative to the
Bar-llan 0.701 0034 0792 0011 0773 0032 0872 0012 consensus of two human experts is approaching the score of

For each team, the submission with the highest score is chosen for edccolumn. The one human expert relative to the consensus. Human agreement

values were computed as the mean and standard error over the B 20 test images that appears limited primar”y by ambiguities due to 2D scoring,
were not used in the public leaderboard. rather than by genuine ambiguities in the images.

Spearman’s rank-order correlation of Rand rankings before; DISCUSSION
thinning and after thinning was 0.89, while the rank-order
correlation between the information theoretic rankingsfdre At a 2014 conference on connectomics organized by the Howard
thinning and after thinning was only 0.59. This suggestst thaHughes Medical Institute and Max Planck Society, it was okwiou
the Rand scoring is more robust to border variations thanthat convolutional networks had become a dominant approach
information theoretic scoring. However, our results susfgaat  for boundary detection in serial EM images. Seven yeargegarl
neither scoring system is satisfactory without border thing. the rst published reports of this approachlgin et al., 2007
The best submissions after ISBI'12 did not improve ovehad been met with skepticism. The turning point in convincing
IDSIA by a statistically signi cant margin, if scores aremqmuted  the community may have been the ISBI'12 workshop, when a
after border thinning. In other words, the cooperative phase oconvolutional network submitted by IDSIAwon rst place in¢h
the challenge achieved substantial improvement accorditiges  challenge described here.
original challenge scoring system, but this improvement raiid Similarly, convolutional networks were long employed for
re ect a real improvement in the nuisance metric. Insteace th object recognition l(eCun et al., 1989, 20))4ut were resisted
apparent improvement resulted from the scoring system's ldck @y the mainstream computer vision community for decades.

robustness to border variations. Opinions changed with surprising speed after a paper that
demonstrated superior performance on the ImageNet challenge

3.5. The Challenge Has Saturated the (Krizhevsky et al., 20)3Both case studies demonstrate how a

Limits of 2D Segmentation challenge with public dataset and scoring system can provide

How close have algorithms come to human performance? Tenough objective evidence to persuade a skeptical commumity t
address this question, we also scored two human expertsveelat change its opinion dramatically.
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FIGURE 5 | Metric robustness to thinning. (A)  Rand (/Ra"d) and information theoretic ¥'") scoring measures produce similar rankings, Spearman caefation
D 0.80. (B) This correlation is greatly increased by post-processing @undaries by thinning, Spearman correlation D 0.94. (C,D) Thinning of boundaries almost
universally improves Rand and information theoretic scary measures.VRand rankings are more robust to thinning(C) Spearman correlation D 0.89, compared to

vInfo rankings, (D) Spearman correlation D 0.59.

Our ISBI'12 challenge also demonstrates the importance @jiven the limited size of the test dataset. Human experts do
incentivizing both competition and cooperation. Competition not agree perfectly, mainly because of ambiguities induged b
dominated the challenge before the winner was declaredet tt2D scoring of segmentations. The restriction of the chajkio
ISBI'12 workshop. Cooperation increased afterwards, chizyy 2D had two rationales. First, we wanted to recruit participgant
IDSIASs release of their boundary maps, and resulted in ferth from the entire computer vision community. A 3D challenge
performance gains. Cooperation by sharing of results was alsnight have drawn participants only from the smaller community
incentivized in the Net ix challenge. The winner of the yBar of medical image analysts. Indeed, our leading submission
progress prize could only collect the prize money after retepsi came from a group (IDSIA) with prior experience mainly in
their source code and a description of their algorithnThis 2D images. Second, many approaches to 3D reconstruction
insured cooperation during the multi-year competition period of neurons from serial section EM images rely on 2D

Our challenge also shows that proper design of the scoringegmentation as a rst stepViishchenko et al., 2010; Funke
system is crucial for incentivizing real rather than spusou et al., 2012; Kaynig et al., 2015 herefore, advances in 2D
improvements. Retrospectively, we discovered that most &fegmentation were expected to yield improvements in 3D
the progress after the ISBI'12 workshop came by exploiting eeconstruction.
weakness in our scoring system. We had originally restritted While the ISBI'12 challenge still serves as an accessible
Rand F-score to the foreground pixels in the ground truth, inintroduction to the computational problem, further progress
order to make the scores more robust to unimportant variason will require a 3D challenge on a larger dataset. We previously
in border width. However, it turned out that our score wadlsti attempted to launch one for ISBI'{3but were not successful in
not robust enough. After we applied a border thinning procedureattracting many submissions. One possible explanation iliea
to make all submissions have the same border width, the pos®D challenge was easier for participants because they alheady
workshop gains mostly vanished. experience with 2D images from other domains. We intend to

Nevertheless, our retrospective analysis suggests that theaunch the 3D challenge with a new dataset, and are working
ISBI'12 challenge has succeeded, in the sense that computesays to reduce the barriers to entry. We expect that the génera
human agreement is approaching human-human agreemenlgssons we have learned from the 2D challenge will remaimisef

Shttp://www.net ixprize.com/rules Thttp://brainiac2.mit.edu/SNEMI3D/
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FIGURE 6 | Minor ambiguities in 3D can become signi cant in 2D. Three rows correspond to three successive slices in the imagstack and each path shows a
possible segmentation of a neuron based on a different interetation. In the top panel(A) the neurite borders are clear and therefore its interpretain is unambiguous.
However, in the middle row, a membrane is parallel to the seimning plane (darkened area in red box), leading to ambigyitlt is unclear whether the darkened area
should be a boundary between neurongB,D), or assigned to a neuron(C). This ambiguity has no topological consequences in 3D unléin 2D, where the neuron can
be assigned to just one segment(C), or two (D). Finally, in the 3D interpretation the two cross sections i(E) have the same color because they are connected with
each other through previous slices, while in the 2D interptation, the two cross sections in(F) have different colors because they are not connected to eaclother in
this slice.

In closing, it is important to note that the current best libraryinthe open-source imaging platform Fifs¢hindelinetal.,
3D reconstruction algorithms still require signi cant maal 2012.
proof-reading, itself a crowdsourcing problem, to produce
scienti cally accurate reconstructionsiélmstaedter et al., 2013; AUTHOR CONTRIBUTIONS
Takemura et al., 2013; Kim et al., 2014This highlights
the fact that our current best error rates of 1-2% are stillA, JS, AC, and HS are responsible for the organization of the
much too high. Indeed, scienti cally accurate fully autom@t challenge. The training set was labeled by AC. The test set
reconstructions require exceedingly high levels of aagyra was labeled by DB and IA. The following groups contributed
with nuisance error rates averaging less than 1 mistake peyith their algorithms and submissions: DC, AG, LG, and JS
neuron. However, with recent increases in available trajmdata  (IDSIA); DL, SD, and JB (MLL-ETH); TL, MS, and TT (SCI); LK
and computation, and progress in machine learning methodgCellPro ler); RB and VU (IMMI); XT, CS, and TP (TSC+PP);
there is every reason to believe that this goal might be withiEB and MU (CLP). The evaluation metrics were designed by IA,
reach. HS, and ST, who also wrote the paper. IA coordinated all work.
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Frontiers in Neuroanatomy | www.frontiersin.org 11 November 2015 | Volume 9 | Article 142



Arganda-Carreras et al. Crowdsourcing image segmentation for connectomics

acknowledges funding from ARO award W911NF-12-1-0594comments on the manuscript. Special thanks to Nader Shaar for
DARPA award HR0011-14-2-0004, the Human Frontier Scienceeveloping the challenge website. The serial EM sectionsaésa
Program, and the Mathers Foundation. ST acknowledges suppostere prepared and imaged by AC and R. D. Fetter, for which AC
from the Gatsby Charitable Foundation and the Howard Hugheshanks the Visiting Scientist program at HHMI Janelia Farm.

Medical Institute.

ACKNOWLEDGMENTS

We thank the members of the Seung lab, especially Aonline at:

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
http://journal.frontiersin.org/article/10389/fnana.

Vishwanathan and U. Sumbdl for their technical help and2015.00142

REFERENCES

Arbeldez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Qordetection
and hierarchical image segmentatidEEE Trans. Patt. Anal. Mach. Intel3,
898-916. doi: 10.1109/TPAMI.2010.161

Bourne, J. N., and Harris, K. M. (2012). Nanoscale analysis oftstaisynaptic

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L.ci@glo, J. A.,
Knowles-Barley, S., et al. (2015). Saturated reconstruction ofltaneoof
neocortexCell162, 648-661. doi: 10.1016/j.cell.2015.06.054

Kaynig, V., Vazquez-Reina, A., Knowles-Barley, S., RobertsJdhes, T. R.,
Kasthuri, N., et al. (2015). Large-scale automatic reconstmuctfareuronal
processes from electron microscopy imagdéed. Image AnaR2, 77-88. doi:

plasticity. Curr. Opin. Neurobiol22, 372—-382. doi: 10.1016/j.conb.2011.10.019 10.1016/j.media.2015.02.001

Briggman, K. L., Helmstaedter, M., and Denk, W. (2011). Wiring spigi
in the direction-selectivity circuit of the retina.Nature 471, 183-188. doi:
10.1038/nature09818

Bullinger, A. C., Neyer, A.-K., Rass, M., and Moeslein, K. MLQZ0Community-
based innovation contests: Where competition meets cooperati@reat.
Innov. Managel9, 290-303. doi: 10.1111/j.1467-8691.2010.00565.x

Bumbarger, D. J., Riebesell, M., Rédelsperger, C., and Sommé¢2ML.3). System-
wide rewiring underlies behavioral di erences in predatory and baate
feeding nematode<Cell152, 109-119. doi: 10.1016/j.cell.2012.12.013

Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Chenglagka®, et al. (2010).
An integrated micro-and macroarchitectural analysis of the droskagtriain by
computer-assisted serial section electron microscdploS Biol8:e1000502.
doi: 10.1371/journal.pbio.1000502

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreragihigeh, S., Longair,
M., etal. (2012). Trakem2 software for neural circuit reconstarctPLoS ONE
7:€38011. doi: 10.1371/journal.pone.0038011

Chenouard, N., Smal, I., de Chaumont, F., MaSka, M., Sbalzarki, Gong, Y.,
et al. (2014). Objective comparison of particle tracking methdig. Methods
11, 281-289. doi: 10.1038/nmeth.2808

Chklovskii, D., Vitaladevuni, S., and Scheer, L. (2010). Seawtomated
reconstruction of neural circuits using electron microscopyCurr. Opin.
Neurobiol 20, 667—675. doi: 10.1016/j.conb.2010.08.002

Ciresan, D. C., Giusti, A., Gambardella, L. M., and Schmidhubg0d2). “Deep

Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., Richardson,uvaga, S. C., et al.
(2014). Space-time wiring speci city supports direction selegtivithe retina.
Nature509, 331-336. doi: 10.1038/nature13240

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2013). Imagetassi cation
with deep convolutional neural networksAdv. Neural Inf. Process. Sy,
1097-1105.

Kroeger, T., Mikula, S., Denk, W., Koethe, U., and Hamprecht, F.2Q13).
Learning to segment neurons with non-local quality measurbted. Image
Comput. Comput. Assist. Intert6(Pt 2), 419-427. doi: 10.1007/978-3-642-
40763-5_52

Lakhani, K. R., Boudreau, K. J., Loh, P.-R., Backstrom, L., Bald@.,
Lonstein, E., et al. (2013). Prize-based contests can providdoss to
computational biology problemsNat. Biotechnol31, 108-111. doi: 10.1038/
nbt.2495

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, RuBbard, W.,
et al. (1989). Backpropagation applied to handwritten zip code retogn
Neural Computl, 541-551.

LeCun, Y., Huang, F. J., and Bottou, L. (2004). “Learning metHodgeneric
object recognition with invariance to pose and lighting,” IBEE Conference
on Computer Vision and Pattern Recognition, C\(RRshington, DC: IEEE
Computer Society), 97-104.

Martin, D., Fowlkes, C., and Malik, J. (2004). Learning to detettiral image
boundaries using local brightness, color, and texture clEEE Trans. Patt.

neural networks segment neuronal membranes in electron microscopy ithages Anal. Mach. Intell26, 530-549. doi: 10.1109/TPAMI.2004.1273918

in Annual Conference on Neural Information Processing SystéRfS)(Nake
Tahoe, NV), 2852—-2860.

Funke, J., Andres, B., Hamprecht, F., Cardona, A., and Cook, M2§2@ cient
automatic 3D-reconstruction of branching neurons from EM dat@omput.
Vis. Patt. Recogii004-1011. doi: 10.1109/cvpr.2012.6247777

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seuisy, &hd Denk,
W. (2013). Connectomic reconstruction of the inner plexiform layethe
mouse retinaNature500, 168—174. doi: 10.1038/nature12346

Jain, V., Bollmann, B., Richardson, M., Berger, D. R., HelmstgelteiN.,
Briggman, K. L., et al. (2010a).

“Boundary learning by optimizatiath w

Meila, M. (2005). “Comparing clusterings: an axiomatic view,Pihoceedings of
the 22nd International Conference on Machine Learning, ICM{Ne® York,
NY: ACM), 577-584.

Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. Md, a
Chklovskii, D. B. (2010). Ultrastructural analysis of hippocampal
neuropil from the connectomics perspectiveNeuron 67, 1009-1020. doi:
10.1016/j.neuron.2010.08.014

Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., and Gkikld. B. (2013).
Machine learning of hierarchical clustering to segment 2D and 30jes®LoS
ONE8:e71715. doi: 10.1371/journal.pone.0071715

topological constraints,” 2010 IEEE Conference On Computer Vision andRand, W. M. (1971). Objective criteria for the evaluation of @rsg methods.J.

Pattern Recognition (CVPRpan Francisco, CA: IEEE Computer Society),

2488-2495.

Jain, V., Murray, J., Roth, F., Turaga, S., Zhigulin, V., Briggr€aret al. (2007).
“Supervised learning of image restoration with convolutional reks,” in
IEEE 11th International Conference on Computer Vision, |F0&de Janeiro),
1-8.

Jain, V., Seung, H. S., and Turaga, S. C. (2010b). Machinee#atto segment
images: a crucial technology for connectomic€urr. Opin. Neurobiol20,
653—-666. doi: 10.1016/j.conb.2010.07.004

Jarrell, T. A., Wang, Y., Bloniarz, A. E., Brittin, C. A., Xu, M., Thomsb N., et al.
(2012). The connectome of a decision-making neural netwdkienc&37,
437-444. doi: 10.1126/science.1221762

Am. Stat. Asso66, 846—850.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., btaal. (2014).
Imagenet large scale visual recognition challemgte J. Comput. Visl—42.

Schindelin, J., Arganda-Carreras, |., Frise, E., Kaynig, VgéaigrM., Pietzsch, T.,
etal. (2012). Fiji: an open-source platform for biological-imagalysis. Nat.
Methods9, 676—682. doi: 10.1038/nmeth.2019

Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quis al.
(2005). Automated molecular microscopy: the new Leginon syster8truct.
Biol. 151, 41-60. doi: 10.1016/j.jsb.2005.03.010

Takemura, S.-Y., Bharioke, A., Lu, Z., Nern, A., VitaladevuniR&/in, P. K.,
et al. (2013). A visual motion detection circuit suggestedOpsophila
connectomicsNature500, 175-181. doi: 10.1038/nature12450

Frontiers in Neuroanatomy | www.frontiersin.org 12

November 2015 | Volume 9 | Article 142



Arganda-Carreras et al.

Crowdsourcing image segmentation for connectomics

Tapia, J. C., Wylie, J. D., Kasthuri, N., Hayworth, K. J., Schakkk,
Berger, D. R., et al. (2012). Pervasive synaptic branch removéiein
mammalian neuromuscular system at birth. Neuron 74, 816-829. doi:
10.1016/j.neuron.2012.04.017

Turaga, S., Briggman, K., Helmstaedter, M., Denk, W., and Seung, (2089).

Maximin a nity learning of image segmentationAdv. Neural Info. Proc. Syst.

22,1865-1873.

Unnikrishnan, R., Pantofaru, C., and Hebert, M. (2007). Towardectiye

evaluation of image segmentation algorithm&EE Trans. Patt. Anal. Mach.

Intell. 29, 929-944. doi: 10.1109/TPAMI.2007.1046

White, J. G., Southgate, E., Thomson, J. N., and Brenner, $)(1B8e structure
of the nervous system of the nematddaenorhabditis elegarizhilos. Trans. R.
Soc. Lond. B Biol. S8il4, 1-340.

Coniict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or nancial relatimps that could
be construed as a potential con ict of interest.

Copyright © 2015 Arganda-Carreras, Turaga, Berger, Ciregasti, Gambardella,
Schmidhuber, Laptev, Dwivedi, Buhmann, Liu, Seyedho3seidizen, Kamentsky,
Burget, Uher, Tan, Sun, Pham, Bas, Uzunbas, Cardona, Sohan Seung. This
is an open-access article distributed under the terms dCritive Commons
Attribution License (CC BY). The use, distribution or rdpation in other forums
is permitted, provided the original author(s) or licensera@edited and that the
original publication in this journal is cited, in accordangith accepted academic
practice. No use, distribution or reproduction is permhittdich does not comply
with these terms.

Frontiers in Neuroanatomy | www.frontiersin.org

13

November 2015 | Volume 9 | Article 142



