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§ Problems:
§ Segmentation / classification,
§ Image enhancement / restoration;

§ Techniques:
§ Feature engineering and learning,
§ Random forests, decision jungles,
§ Max-flow / min-cut, optical flow, registration,
§ Convolutional neural networks.
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Electron microscopy
membrane segmentation

Optical microscopy
on cleared brains

But also other
non-medical datasets
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Incorporate strong prior knowledge from field 
experts into modern algorithmic pipelines
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§ Different types of expert prior knowledge:
§ useful known properties of the input data,
§ expert approach to solve the problem,
§ known statistics of the output objects.

Input data Algorithm Solution
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§ Unrepresentative data sets.
§ Some ambiguities cannot be resolved without additional 

structural information (3D problem in 2D).

§ Limited amount of labelled data.
§ Annotations can be very expensive limiting the power of 

supervised learning methods.

§ Limited number of samples.
§ Data collection can be very expensive (invasive tissue 

sampling, growing a subject animal).
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Why expert-aware approach?
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§ Anisotropic data segmentation / enhancement.
§ Expert-mimicking method to resolve ambiguities in electron 

microscopy and video data.

§ Parameter tuning in a weakly-supervised setting.
§ Employing known biological properties of the solution for 

amyloid plaque estimation.

§ Transformation-invariance.
§ Enforcing algorithm invariance to the variation of the input 

data to allow efficient use of available samples.
13/12/16Dmitry Laptev 8

The structure of the presentation
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List of publications
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Anisotropic data

Idea: to employ expert approach to resolve ambiguities
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§ A collection of sequential images (a stack), in which the 
resolution across one dimension of the stack is much lower 
than the resolution of the other two dimensions.
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Anisotropic data definition
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§ Highly anisotropic volume (resolution is 4 ✕ 4 ✕ 50nm).
§ Some neuronal structures are blurred due to anisotropy.

§ Enables neuronal geometry reconstruction for Connectomics.
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Serial section transmission electron microscopy
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§ Resolve ambiguities using neighboring sections.
§ A step from local appearance to global appearance (from 2D to 3D).
§ Find corresponding regions and combine information from them.
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Expert approach
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§ Image registration:
§ find pixels in two images that correspond to the same biological structure.

§ We use either SIFT-flow or Optical-flow methods:
§ given two images I1 and I2, find the warping F1,2 between them.
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Correspondence problem
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Anisotropic data restoration: SuperSlicing

§ Bringing the information from multiple slices is useful by 
itself, but the structure can be blurred in multiple sections.

§ Can we restore the averaged away details?

§ Idea: decompose the observed frame into “hidden sub-frames”
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Idea of SuperSlicing
§ Very ill-posed problem: multiple possible solutions.

§ Need structural constraints.

y

x
z

Observed frame Three possible sub-frame decompositions

Projection plane
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Idea of SuperSlicing

Y1 Y2 Y3

Y1 X2,1 X2,2 X2,3 Y3

• Find corresponding pixels in 
anisotropic frames by 
solving registration task.

• Interpolate 
correspondences between 
pixels in sub-frames.

• Corresponding pixels 
should have similar 
intensities.

Hidden sub-frame decomposition of Y2

Y1, Y2, Y3 – observed neighboring frames
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SuperSlicing experiments: ssTEM

Anisotropic frames            Reconstructed sub-frame
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SuperSlicing experiments: video

Three original frames                        Linear interpolation                      Optical Flow warping                Ours
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SuperSlicing experiments: synthetic video

Synthetic frames                    Linear interpolation           Optical Flow warping                     Ours            Original frames
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SuperSlicing for anisotropic data segmentation
Section Y3

Section Y2

Section Y1

X2,1,  X2,2, X2,3

φ(xp2,3)
φ(xp

2,2)
φ(xp

2,1)

[φ(xp
2,1), φ(xp

2,2), φ(xp
2,3)]

Random Forest

(a) (b) (c)

a) Decompose anisotropic section with SuperSlicing
b) Extract feature vectors in sub-frames
c) Concatenate feature vectors and pass to a Random 

Forest classifier
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SuperSlicing for anisotropic data segmentation

Original fragment          One-slice segmentation   SuperSlicing segmentation           Ground Truth

Method Warping error
One section segmentation 2.87*10-3

Three section segmentation 2.69*10-3

SuperSlicing segmentation 2.38*10-3

(17%)
(11%)
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§ Expert-mimicking approach:
§ Employ correspondences to resolve ambiguities.

§ SuperSlicing:
§ Reconstruct hidden slices, not interpolate between them.
§ 10% better PSNR than with non-linear interpolation.
§ Good for visualization and further processing.

§ Segmentation:
§ Concatenated feature vectors to combine information from slices.
§ 17% better accuracy when compared to one-slice segmentation.
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Anisotropic data summary
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Global biological priors

Idea: to employ the known properties of the output objects
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§ Plaques in a 3D brain volume: compact regions of higher intensity.

§ Challenges:
§ large appearance variations within the volume;
§ weakly-supervised setting (no ground truth).
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Amyloid plaque distribution estimation
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Plaque estimation pipeline
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

a) The brain volume imaged with SPIM.
b) Each slice is separated into:
c) background and
d) plaque candidates.
e) Volume segmentation.
f) Volume-atlas registration.
g) Resulting plaques in green and

cerebellum highlighted in red.
§ Algorithm parameters:

§ plaque candidate threshold,
§ segmentation smoothness.
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§ Idea: employ known biological properties of the output.
§ For example, plaques volume is known to be 6.5e-5 mm3.

§ Given a parametrized algorithm     , tune the parameters 
such that the output statistic corresponds to the prior.

Feedback-loop for parameter tuning

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Prior
on
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Feedback-loop for parameter tuning

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Prior
on



|| 13/12/16Dmitry Laptev 29

§ Biologically-motivated approach:
§ Employ known biological properties of the output structures to tune 

the parameters of the algorithm.

§ Feedback-loop for parameter tuning:
§ Enabling technology in a weakly-supervised setting.
§ Generally applicable and theoretically justified.

§ Senile plague analysis:
§ Whole brain 3D volumetric estimation.
§ No manual parameter tuning resulting in less subjective pipeline.

Global biological priors summary
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Transformation-invariance

Idea: to employ the intrinsic properties of the input data
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§ Nuisance variations in the data:
§ Natural images: illumination, camera view-point, projections;
§ Medical data: rotations, shifts, deformations, imaging artefacts.

§ Non-nuisance variations:
§ Important to the solution.
§ Size of the cancerous cell,
§ Orientation of a digit (6 vs. 9).

§ Goal: develop computer-vision algorithms robust to
transformations defined by an expert in the field.

Transformation-invariance
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§ Transformation-invariant features (SIFT, RIFT):
§ Only allow simple transformations and simple algorithms.

§ Spatial Transformer Networks:
§ Learning transformations, not incorporating the known ones.
§ Introduces additional layer of complexity.

§ Multiple instance learning (multi-column networks):
§ Transformation-invariant algorithm, but not features.

§ Augmentation (state of the art):
§ Relying on the power of the algorithm to learn a solution for

every transformation. Requires more flexible models.

Transformation-invariance methods
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§ Idea:
§ Take a feature and make it transformation-invariant.

§ Given:
§ a feature 𝑓k(𝑥) of an input image 𝑥,
§ a set Φ of transformations 𝜙.

§ Formulate a new transformation-invariant feature gk(𝑥):

TI-pooling (transformation-invariance pooling)

Lemma 2. The feature of the image x defined above is transformation-
invariant if the set Φ of all possible transformations forms a group
(axioms of closure, associativity, invertibility and identity).
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§ Siamese networks share parameters => no parameter increase.
§ Efficient gradient computations => back-propagation works.

TI-pooling with convolutional neural networks

…

…

…

…
… max

(a) (b) (c) (d) (e) (f)

(g) (i)(h) (j)

weight
sharing

weight
sharing

Transformation-invariant
features
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§ Learns on ”canonical samples”:
§ No need to learn different features for different orientations.
§ I.e. training on the most representative samples.

§ Faster convergence than augmentation.
§ Same accuracy with smaller models.

TI-pooling properties

Original patches are often 
oriented similarly for 
learning, this orientation is 
considered canonical.
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TI-pooling experiments
Half-rotated MNIST

Neuronal segmentation

Mnist-rot-12k

1.2
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§ Intrinsic properties of the data/imaging:
§ Employ known nuisance variations and make the algorithm 

invariant to them for better data usage.

§ TI-pooling:
§ Guaranteed to learn transformation-invariant features for any 

arbitrary set of expert-defined transformations.
§ Allows to simplify the complexity of the network.
§ Converges faster and more robustly than without TI-pooling.
§ Achieves state of the art results in multiple benchmarks.

TI-pooling summary
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§ Anisotropic data:
§ SuperSlicing – an expert-mimicking approach to resolve 

ambiguities through correspondences between slices/frames.
§ Novel neuronal structure segmentation pipeline.

§ Global biological priors:
§ Feedback-loop for parameter tuning, which employs biologically-

motivated priors known from experts in the field.
§ Parameter-free non-subjective pipeline for plaque detection.

§ Transformation-invariance:
§ TI-pooling to make the algorithm robust to nuisance variations in 

the data and make the learning process more efficient.

Conclusion
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Gratitude
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Appendix A
Anisotropic data
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Anisotropic data challenges
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Anisotropic data segmentation
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Anisotropic data segmentation

(a) (d)(c)(b)

Random Forest

...

...

... ... ... ...

Probability map

Graph Cut
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Anisotropic data segmentation: results

§ ISBI 2012 neuronal segmentation challenge.
§ 3.6% and 6.4% more accurate when using dense correspondence.
§ Second-best result overall, orders of magnitude faster than competitors.
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SIFT-flow functional
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Features

Features over different windows with different parameters:
§ Mean, Minimum, Maximum, Median, Variance,
§ Gaussian blur, Sobel filter, Hessian, Gradient,
§ Bilateral, Lipschitz, Kuwahara, Gabor, Laplacian,
§ SIFT descriptors,
§ Radon-like features, Ray features,
§ Line Filter Transform.
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Graph cut segmentation
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Graph cut smoothing term
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Graph cut gradient flux term
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Graph cut good continuation term
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SuperSlicing algorithm

§ Notation
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SuperSlicing algorithm

§ Energy minimization problem
An average of the hidden frames should give observed frame

Smoothness across all the correspondences

Smoothness within the frame 

Quadratic programming: global optimum
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SuperSlicing ssTEM experiments
Y1

Y2

Y3

Three original frames              Linear interpolation         Optical Flow warping             Ours

X2,1

X2,2

X2,3
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SuperSlicing video experiments

Synthetic frames                    Linear interpolation           Optical Flow warping                     Ours            Original frames
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SuperSlicing video experiments

22

24

26

28

30

32

34

36

38

1 2 3 4
Method Number

Walking, 3 sub−frames

PS
N

R
 (d

B)

18

20

22

24

26

28

30

32

1 2 3 4
Method Number

Hand Waving, 2 sub−frames

PS
N

R
 (d

B)

Significantly more consistent reconstruction!
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SuperSlicing experiments
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Appendix B
Cleared brain project
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Clarity / Crystal imaging

• Brains are made transparent by removing the lipids from it
• Some structures can be highlighted with special markers
• UZH group made this process ~20 times faster
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§ Focus on senile plaques: the further the Alzheimer 
decease progressed – the more plaques there are

§ Up to whole brain mouse optical scans
§ Resolution from 2x up to 20x
§ Image sizes: e.g. 2287 x 1542 x 210 x 5

§ Task: count plaques automatically to estimate Alzheimer 
progression (to evaluate possible treatments)
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Datasets we have
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Datasets we have (20x, small, slow)



|| 19/06/14Dmitry Laptev 61

Datasets we have (5x, ¼ brain, slow)
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Datasets we have (2x, whole brain, fast)
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§ Small region, almost no artifacts, some background noise, 
uniform across the volume
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Image processing 20x
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Voxel intensity distribution
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Image processing 20x
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§ Background-foreground modeling

§ Gaussian + Laplace mixture
§ EM-algorithm

§ Gaussian (robust) + everything else
§ μ = sample median 
§ Σ = (q84% - q16%) / 2

§ Second one is simpler and works better
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Image processing 20x
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§ Gaussian kernel density estimation
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Image processing 20x
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§ Finding local peaks, counting, size estimation
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Image processing 20x



||

§ Resulting size histogram is biologically accurate
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Image processing 20x
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§ Lots of variation within one image – no global statistics
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Image processing 2x
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§ Local statistics: local percentile within a disk
§ E.g.: > 90% local percentile shows plaques
§ Favor regions of almost-flat intensity

§ 60% local percentile is a background
§ See intensity comparing to the background:
§ E.g.: “logit(fg / bg – 1)“ shows plaques probability

§ That all is to be done in 3d
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Image processing 2x
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Image processing 2x: original
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Image processing 2x: background
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Image processing 2x: above 90%
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Image processing 2x: plaques
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§ Different channels contain similar information
§ Apply MRF for every voxel from all the channels
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Image processing 2x: combining channels
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§ Find all connected components in a binary image
§ Filter out regions smaller than 10 micrometer in radius
§ Visualize the plaques and all the statistics
§ Repeat for different channels
§ Repeat for different brains
§ For verification use:

§ Plaque size distribution is know
§ Older brains should have more and larger plaques
§ Some channels are better than others
§ Best tool: your eyes and eyes of your collaborators
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Image processing 2x
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§ Live result demo
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Image processing 2x
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Results: young brain histogram
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Results: old brain histogram
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Results: old vs. young brain comparison

• Red color shows larger number of plaques, green color – smaller.
• Brains 2-5 are young, brains 6-9 are older.
• Channels 2 and 3 are similar.
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Feedback-loop algorithm
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Feedback-loop analysis

• More than three quarters of all the plaques are developing in neocortex.
• Young brains contain respectively 26859, 19602 and 34152 plaques.
• Old brains respectively 41924, 57292 and 50136 plaques.
• This result, together with manual result inspection, proves the reasonability.
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Appendix C
Convolutional Decision Trees
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Connectomics*

* Reconstruction and study of Connectome: a map of neuron connections
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Connectomics

§ Hard to automate
• On a whole-brain scale

it is simply necessary
§ Good techniques are:

• Require huge training sets
• Very slow to train
• Infeasible in one CPU

§ Convolutional Decision Trees
• Trade-off between quality and speed
• Making Connectomics fast
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Other Computer Vision tasks

Segmentation tasks usually start with computing per-pixel probabilities
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General pipeline

Φ
Random Forest

Graph Cuts

Φ is a set of features

The problem is usually here
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§ Generic features
• HoG features,
• Gaussian blur,
• Sobel filters,
• SIFT features

§ Domain-specifically designed
• Line Filter Transform

for blood vessel segmentation,
• Context Cue features

for synapse detection
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Static predefined features
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§ Unsupervised feature learning
• Bag of Visual Words,
• Sparse Coding,
• Autoencoders

§ Supervised features learning
• Sparse coding (quadratic),
• KernelBoost,
• Convolutional Neural Networks (CNN)
• Convolutional Decision Trees
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Feature learning
+ no feature design
+  data-specific features
– not task-specific

+ task-specific features
– either restricted class
– or very slow to train
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§ Learn informative features one by one

• Tree split is a convolution with some kernel
• Maximize the relaxed information gain
• Introduce smoothness regularization

§ Combine these features to form a decision tree

• Grow the tree while the performance increases
• Adjust the regularization while growing
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Convolutional Decision Trees
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§ Oblique decision trees notation:
• - - vectorized image patch
• - vectorized convolution kernel
• Split predicate: 

§ Relaxed split predicate:
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Relaxed information gain
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§ The notation of Information Gain is almost the same...

§ ... but now smooth!
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Relaxed information gain
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Relaxed information gain
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§ Smoothness term Г...

§ ... makes the functional „more convex“
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Regularized information gain
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Regularized information gain
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L-BFGS
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Learning one informative feature

CDT

α := 2*α

* we refer to the paper for all the details
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Examples of learned features

Left: static generic features; right: features learned with CDT

Features are interpretable: there are edge detectors, curvature detectors, etc.
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Results: Weizmann Horse dataset

(a): ground truth; (b) – (e): results for different tree depth
(top): per-pixel probabilities; (bottom): graph-cut segmentation
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Results: Weizmann Horse dataset

CDT is better than any general local technique, but worse than task-specific
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Results: Drosophila VNC segmentation

From left to right: results of anisotropic RF, CDT and CNN
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Results: Drosophila VNC segmentation

CDT is 4.5% better than the second-best technique and only 2.2% worse than CNN
CDT requires 10 hours training in 1 CPU, while CNN requires a week in GPU-cluster

A week in GPU,
A year in CPU

10 hours in CPU
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§ Convolutional Decision Trees:
§ Much faster (over-night experiment)
§ Require no special hardware
§ Trade-off between the speed and the quality

§ Consist of three main components:
§ Relaxed information gain
§ Strictly convex regularization term
§ Iterative optimization algorithm
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Summary
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Appendix D
Transformation-invariant

convolutional jungles
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Feature formulation
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Feature examples
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Transformation-invariant convolutional jungles
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TICJ experiments
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TICJ experiments
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TICJ summary



||

Appendix E
TI-pooling
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TI-pooling convergence


