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Towards expert-aware computer vision
algorithms in medical imaging

= Problems:
= Segmentation / classification,
* [mage enhancement / restoration;

= Techniques:
= Feature engineering and learning,
= Random forests, decision jungles,
= Max-flow / min-cut, optical flow, registration,
= Convolutional neural networks.
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Towards expert-aware computer vision
algorithms in medical imaging

Electron microscopy Optical microscopy But also other
on cleared brains non-medical datasets
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Towards expert-aware computer vision
algorithms in medical imaging

Incorporate strong prior knowledge from field
experts into modern algorithmic pipelines



Towards expert-aware computer vision
algorithms in medical imaging
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= Different types of expert prior knowledge:
= useful known properties of the input data,
= expert approach to solve the problem,
= known statistics of the output objects.



Why expert-aware approach?

= Unrepresentative data sets.

= Some ambiguities cannot be resolved without additional
structural information (3D problem in 2D).

= Limited amount of labelled data.

= Annotations can be very expensive limiting the power of
supervised learning methods.

= Limited number of samples.

= Data collection can be very expensive (invasive tissue
sampling, growing a subject animal).
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The structure of the presentation

= Anisotropic data segmentation / enhancement.

= Expert-mimicking method to resolve ambiguities in electron
microscopy and video data.

= Parameter tuning in a weakly-supervised setting.

= Employing known biological properties of the solution for
amyloid plaque estimation.

= Transformation-invariance.

= Enforcing algorithm invariance to the variation of the input
data to allow efficient use of available samples.
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Anisotropic data

|ldea: to employ expert approach to resolve ambiguities
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Anisotropic data definition

= A collection of sequential images (a stack), in which the
resolution across one dimension of the stack is much lower
than the resolution of the other two dimensions.
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Serial section transmission electron microscopy

= Highly anisotropic volume (resolution is 4 X 4 X 50nm).

= Some neuronal structures are blurred due to anisotropy.
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Expert approach

= Resolve ambiguities using neighboring sections.
= A step from local appearance to global appearance (from 2D to 3D).
* Find corresponding regions and combine information from them.
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Correspondence problem

= Image registration:
= find pixels in two images that correspond to the same biological structure.

= \We use either SIFT-flow or Optical-flow methods:

= given two images /! and I, find the warping F'; , between them.

Fra(Grid)

(non-linear warping)

(input images) (warped image) (difference)
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Anisotropic data restoration: SuperSlicing

= Bringing the information from multiple slices is useful by
itself, but the structure can be blurred in multiple sections.

= Can we restore the averaged away details?
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= |dea: decompose the observed frame into “hidden sub-frames”
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Idea of SupersSlicing

= Very ill-posed problem: multiple possible solutions.

Projection plane

Observed frame Three possible sub-frame decompositions

= Need structural constraints.
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Idea of SuperSlicing

Y?, Y2, Y3— observed neighboring frames
@ <+ Find corresponding pixels in
anisotropic frames by
solving registration task.

» Interpolate
correspondences between
pixels in sub-frames.

« Corresponding pixels
should have similar

X2 X22 3 intensities.
\
%
Hidden sub-frame decomposition of Y2
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SuperSlicing experiments: video

Three original frames Linearinterpolation Optical Flow warping Ours
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SuperSlicing experiments: synthetic video
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Synthetic frames Linear interpolation

Optical Flow warping
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SupersSlicing for anisotropic data segmentation

X21 X22 X23
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a) Decompose anisotropic section with SuperSlicing

b) Extract feature vectors in sub-frames

c) Concatenate feature vectors and pass to a Random
Forest classifier

- [¢(Xp2’1)1 QD(XpZ’Z)’ (P(Xp2’3)]
4

Random Forest

£o%RTR
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SupersSlicing for anisotropic data segmentation

Ground Truth
Method Warping error
One section segmentation 2.87*103 (17%)
Three section segmentation 2.69*103 (11%)
SuperSlicing segmentation 2.38*103

Dmitry Laptev | 1312116 | 22



Anisotropic data summary

= Expert-mimicking approach:
= Employ correspondences to resolve ambiguities.

= SupersSlicing:
= Reconstruct hidden slices, not interpolate between them.
= 10% better PSNR than with non-linear interpolation.
= Good for visualization and further processing.

= Segmentation:
= Concatenated feature vectors to combine information from slices.
= 17% better accuracy when compared to one-slice segmentation.
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Global biological priors

|dea: to employ the known properties of the output objects
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Amyloid plaque distribution estimation

= Plaquesin a 3D brain volume: compact regions of higher intensity.

= Challenges:
= large appearance variations within the volume;
= weakly-supervised setting (no ground truth).
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Plaque estimation pipeline

a) The brain volume imaged with SPIM.
b) Each slice is separated into:
c) background and

)  plaque candidates.
e) Volume segmentation.
f) Volume-atlas registration.

g) Resulting plaques in green and
cerebellum highlighted in red.
= Algorithm parameters:
= plague candidate threshold,
= segmentation smoothness.
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Feedback-loop for parameter tuning

= |dea: employ known biological properties of the output.
= For example, plaques volume is known to be 6.5e-5 mm3,

1©] -
\ Prior | o — f(A(Va@>)

= Given a parametrized algorithm A, tune the parameters
such that the output statistic corresponds to the prior.
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Feedback-loop for parameter tuning

e} - M

\ Prior | — f(.A(V,@))

Lemma 1. Let the algorithm A depend on the parameter set ©. Also
assume we have formulated a property f of the output of A as a statis-
tic f(A(©)). If the function f(A(0)) is smooth and strictly monotonic
for every 0 € ©, then the binary search procedure 1s able to identify
the value of the parameters 6 such that f(A(©)) is equal to the desired
prior on [ up to any tolerance level within a finite amount of steps.
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Global biological priors summary

= Biologically-motivated approach:

= Employ known biological properties of the output structures to tune
the parameters of the algorithm.

* Feedback-loop for parameter tuning:
= Enabling technology in a weakly-supervised setting.
= Generally applicable and theoretically justified.

= Senile plague analysis:
= Whole brain 3D volumetric estimation.
= No manual parameter tuning resulting in less subjective pipeline.
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Transformation-invariance

ldea: to employ the intrinsic properties of the input data
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Transformation-invariance

= Nuisance variations in the data:
= Natural images: illumination, camera view-point, projections;
» Medical data: rotations, shifts, deformations, imaging artefacts.

= Non-nuisance variations:
= |mportant to the solution. S 5 S. Zd
= Size of the cancerous cell, (2) ®) ©) )
= QOrientation of a digit (6 vs. 9). S S ;' ;.
® (2) (h)

©

= Goal: develop computer-vision algorithms robust to
transformations defined by an expert in the field.
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Transformation-invariance methods

= Transformation-invariant features (SIFT, RIFT):
= Only allow simple transformations and simple algorithms.
= Spatial Transformer Networks:
» Learning transformations, not incorporating the known ones.
= Introduces additional layer of complexity.
= Multiple instance learning (multi-column networks):
= Transformation-invariant algorithm, but not features.
= Augmentation (state of the art):

= Relying on the power of the algorithm to learn a solution for
every transformation. Requires more flexible models.
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Tl-pooling (transformation-invariance pooling)

= |dea:

= Take a feature and make it transformation-invariant.
= Given:

= a feature f,(x) of an input image x,

= a set @ of transformations ¢.

= Formulate a new transformation-invariant feature g,(x):

gr(z) = max fr(o(x))

Lemma 2. The feature of the image x defined above is transformation-
invariant if the set @ of all possible transformations forms a group
(axioms of closure, associativity, invertibility and identity).
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Tl-pooling with convolutional neural networks

i S ; Eﬂ IT_ x Transforfrg:ttliﬁg;invariant
o /
5 O\ I g I S max_w
r |

= Siamese networks share parameters => no parameterincrease.
» Efficient gradient computations => back-propagation works.

(a)

Dmitry Laptev | 1312116 | 34



Tl-pooling properties

= [earns on "canonical samples”:
= No need to learn different features for different orientations.

= |.e. training on the most representative samples.

Original patches are often
oriented similarly for
learning, this orientation is
considered canonical.

= Faster convergence than augmentation.
= Same accuracy with smaller models.

Dmitry Laptev | 1312116 | 35



Tl-pooling experiments

Mnist-rot-12k

Half-rotated MNIST

Method Error, %
ScatNet-2 7.48
PCANet-2 7.37
TIRBM 4.2
TI-POOLING (ours) 1.2

Method Error, %
FCN 2.1
CNN 1.2
STN (general) 0.8
STN (affine) 0.7
TI-POOLING (ours) 0.8

Neuronal segmentation

Method Error, %
MIL over CNN 8.9
CNN with augmentation 8.1
TI-POOLING - dropout 7.4
TI-POOLING + dropout 7.0
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Tl-pooling summary

= |ntrinsic properties of the data/imaging:

= Employ known nuisance variations and make the algorithm
invariant to them for better data usage.

= Tl-pooling:

Guaranteed to learn transformation-invariant features for any
arbitrary set of expert-defined transformations.

Allows to simplify the complexity of the network.

= Converges faster and more robustly than without TI-pooling.
Achieves state of the art results in multiple benchmarks.
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Conclusion

= Anisotropic data:

= SuperSlicing — an expert-mimicking approach to resolve
ambiguities through correspondences between slices/frames.

= Novel neuronal structure segmentation pipeline.
= Global biological priors:

= Feedback-loop for parameter tuning, which employs biologically-
motivated priors known from experts in the field.

= Parameter-free non-subjective pipeline for plaque detection.
= Transformation-invariance:

= Tl-pooling to make the algorithm robust to nuisance variations in
the data and make the learning process more efficient.
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Gratitude

Dmitry Laptev | 1312116 | 39



Appendix A
Anisotropic data



Anisotropic data challenges

Membranes that are not orthogonal to cutting plane are|blured
(as each image 1s a projection of the whole thick shce

3

- S ‘ ' ¥ sl ol 3
Neighboring slices are fhighly differentjone from another
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Anisotropic data segmentation

= Let /5=, I* and I**! be neighboring sections,
= x} is a pixel in section k,

= ¢(x;) - feature vector in pixel x;.

= Suppose we are given non-linear warpings operator

s Fr1x Fro1p(x!) = 2%

= Fryik Fk+1,k(xl,§+l) — i’,ﬁ-

= Then we can create an extended feature vector by
concatenation [ (x%); p(3%); ()]

p p p
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Anisotropic data segmentation

Graph Cut

o(aF) Random Forest

T R
oﬁﬁfﬁ%

(Il PITT T [T
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p(p)

m!—»lll---

~<
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Anisotropic data segmentation: results

= [SBI 2012 neuronal segmentation challenge.

» 3.6% and 6.4% more accurate when using dense correspondence.
= Second-best result overall, orders of magnitude faster than competitors.

Method || Pixel error | Warping error

Human || 6.7 * 102 3.4%10 %
Dense || 7.9 %102 6.2 x 104
Direct || 8.0 % 1072 6.5 % 104
One slice|| 8.5 % 1072 6.4 x 104
IDSIA || 6.0 %102 4.3% 104
CSIRO|| 8.7 %102 6.8 % 104
Utah || 1.3%x 107! 1.6 % 102
NIST || 1.5 %101 1.6 % 102
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SIFT-flow functional

N
E(Fi14) =Y min (||s(xf) — s(Fi_1,(5 )|, 1) +
p=1
N
> D Frorixy ™))+
p=1
Z min (aD(Fi—1x(xy "), Fee1x(x; 1)), d)
(p,q)€e

s(x,) sift descriptor in pixel x,;
D(x,,x,) distance between pixels x, and x,;

t, v, o, d model parameters.
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Features

Features over different windows with different parameters:
= Mean, Minimum, Maximum, Median, Variance,

= Gaussian blur, Sobel filter, Hessian, Gradient,

= Bilateral, Lipschitz, Kuwahara, Gabor, Laplacian,

= SIFT descriptors,

= Radon-like features, Ray features,

= Line Filter Transform.
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Graph cut segmentation

Y = {y,} - binary labelling is found by minimizing the energy
with max-flow/min-cut computation:

E(Y) ZE'f()’p )+ As Z E(yp,yq)+
(pg)€e

Agf Zng(}’p) + Age Z Egc(¥p;Yq),
p=1 (p,q)€Ee

2)

E,r(y,) negative log likelihood of a RF;

E(y,,y,) smoothness term;

Ey(y,) gradient flux term;
)

Eg. (yp, y4) good continuation term.
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Graph cut smoothing term

Penalizes for discontinuities in the segmentation for neighbored
pixels of similar intensities:

(6(%p) — i(xq))z) 0pYa) (3

Es(yp7yq) — €Xp (_ ) D(x ¥ )7
s Py g

where 6(y,,y,) is a Kronecker function that equals 0 if y, = y,
and 1 otherwise.
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Graph cut gradient flux term

[ max(0,F(x,)) ify,=1
2000 =\ "m0 sl im0, @

where F(x,) denotes a gradient flux,

F(x,) = ng: (g e < Unp,zgs Vi > Uy x, TEPIESENLS 2 unit
vector pointing from pixel x, to the neighboring pixel x, and
vector v,, corresponds to the gradient vector at pixel x,
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Graph cut good continuation term

(i(xp) — im)z) 0— (Yps Yq)
202, D(x,,x,)
(5)
The variable i,, encodes the average gray value of membrane
pixels and o, is estimated as the variance of these gray values.

The factor 6_,(y,,y,) = 1 fory, = 1, y, = 0 and equals O for all
other cases.

Egc(yp7yq) — I < Vx,y Ux, x, > |exp (_
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SuperSlicing algorithm

= Notation

o Y" — observed frames, n € [1,..., N|,
* ¥, — pixel p of the frame Y,

* i(y,) — the intensity of pixel yy,

o e(X[,’ ) — a set of neighbors of pixel x/,
o () — a set of given correspondences,

o X™' — hidden sub-frames decomposition of Y,

le(1,...,L]
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SuperSlicing algorithm

= Energy minimization problem

An average of the hidden frames should give observed frame
L

E(X™ X = 37 (i) —1L I'(X;Q”’))2
J=1

yeyn

Smoothness across all the correspondences

2
+A ) ( Z Nix) - > w(x x”’+1)/(x)>

(’\gl l+1)€Q XEE I XEE(’\CI;,/-{-1)

Smoothness within the frame

+v > (i(Xg’/) — "(Xc';’/))2

n, _n,l
Xo' /);166(2‘ ) Quadratic programming: global optimum
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SuperSlicing ssTEM pies
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SuperSlicing video experiments

y1
F
' =
; } : \ : .
-
X2,2
? | | 18
' ] . ! \ j ¢
Synthetic frames Linearinterpolation Optical Flow warping Ours Original frames
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SuperSlicing video experiments

Walking, 3 sub—frames Hand Waving, 2 sub—frames
38} — A 32} —
36| - - = T, I
T 30 '
I |
34 | == o8l |
m 32f | . o |
) T 26¢ T
c 30} ' —— o
& ! ! G 24t
o 28t ' 1 o
o6 22+t
|
24| - 201
ool p—— 1 18l 1
1 2 3 4 1 2 3 4
Method Number Method Number

Significantly more consistent reconstruction!
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SuperSlicing experiments

Experiment 1. ssTEM data




Appendix B
Cleared brain project



Clarity / Crystal imaging

pad

Fixed brain Lipid removed Washed e et RI adjusted
il A mnolp\r 1
#25 . e A
. XXO“{‘“}. oo .
%8 wx"’ : Sucame ‘".H_Jt&- -y P
Reagent-1 -] Wash au Il Reagent-2 t
> A > > L
L ~7 days s 2~7 days
Counterstain i
Wash
\_> Stock

« Brains are made transparent by removing the lipids from it
« Some structures can be highlighted with special markers
« UZH group made this process ~20 times faster
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Datasets we have

= Focus on senile plaques: the further the Alzheimer
decease progressed — the more plaques there are

= Up to whole brain mouse optical scans

= Resolution from 2x up to 20x
= |mage sizes: e.g. 2287 x 1542 x 210 x 5

= Task: count plaques automatically to estimate Alzheimer
progression (to evaluate possible treatments)
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Datasets we have (20x, small, slow)
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Datasets we have (5x, 4 brain, slow)
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Datasets we have (2x, whole brain, fast)
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Image processing 20x

= Small region, almost no artifacts, some background noise,
uniform across the volume

ile View History Bookmarks Window Help @ & L5751 VE W mm 100 @& Python @ & L5Mse52ME W m 100% BT ThuiB07 Q =
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Image processing 20x
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Voxel intensity distribution
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Image processing 20x

Background-foreground modeling

= Gaussian + Laplace mixture
= EM-algorithm
= Gaussian (robust) + everything else
"= U =sample median
" 2 = (g% - Q1e%) / 2
= Second one is simpler and works better
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Image processing 20x

= Gaussian kernel density estimation
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Image processing 20x

* Finding local peaks, counting, size estimation
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Image processing 20x

= Resulting size histogram is biologically accurate

0.05

0.04

0.03

0.02
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Image processing 2x

= Lots of variation within one image — no global statistics
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Image processing 2x

* Local statistics: local percentile within a disk
= E.g.: > 90% local percentile shows plaques
= Favor regions of almost-flat intensity

= 60% local percentile is a background
= See intensity comparing to the background:
= E.g.:“logit(fg / bg — 1)* shows plaques probability

= That all is to be done in 3d
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Image processing 2x: original
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Image processing 2x: background
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Image processing 2x: above 90%
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Image processing 2x: plaques
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Image processing 2x: combining channels

= Different channels contain similar information
= Apply MRF for every voxel from all the channels
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Image processing 2x

= Find all connected components in a binary image

= Filter out regions smaller than 10 micrometer in radius
= Visualize the plaques and all the statistics

= Repeat for different channels

= Repeat for different brains

= For verification use:
= Plaque size distribution is know
= QOlder brains should have more and larger plaques
= Some channels are better than others
= Best tool: your eyes and eyes of your collaborators
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Image processing 2x

= [jve result demo
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Results: young brain histogram
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Results: old brain histogram
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Results: old vs. young brain comparison

chl ch2 ch3 ch4
brain 2 3015 17259 27220 27788
brain 3 4582 60

brain 4 25932
brain 5 2254
brain 6 3655
brain 7
brain 8
brain 9

* Red color shows larger number of plaques, green color — smaller.
* Brains 2-5 are young, brains 6-9 are older.
« Channels 2 and 3 are similar.
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Feedback-loop algorithm

Algorithm 2 Feedback-loop with binary search
Require: algorithm A, parameter boundaries @i, . Onax.

property f. expected property value E. tolerance level .
repeat
0= %{Omin + gll)d.\i)
if (f(A(Omin)) — E)(f(A(0)) — E) then
Ornin := 0
else
Pmax 1= 0
end if
until |[f(A(0)) — E||3 < e
return ¢
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Feedback-loop analysis

Method Error

(
{ Trained on V;, estimated on V; | 0.8% (training)
|
|
|
|
|

Trained on Vj, estimated on Vj | 1.4% (training)

Trained on V. estimated on V; | 18% (validation)
'E \
Trained on V. estimated on V; | 34% (validation)
\
Ours estimated on V; 12%
Ours estimated on V; 15%

Table 3.1: Comparison of the proposed tuning-free approach with
cross-validation parameter training. By not overfitting to one specific
section, the proposed method achieves better generalization.

* More than three quarters of all the plaques are developing in neocortex.

* Young brains contain respectively 26859, 19602 and 34152 plaques.

« Old brains respectively 41924, 57292 and 50136 plaques.

« This result, together with manual result inspection, proves the reasonability.
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Appendix C
Convolutional Decision Trees



Connectomics*

.Y

N\

BN
B N

* Reconstruction and study of Connectome: a map of neuron connections
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Connectomics

= Hard to automate
« On a whole-brain scale
it is simply necessary
= Good techniques are:
« Require huge training sets
* Very slow to train
* |nfeasible in one CPU

= Convolutional Decision Trees
+ Trade-off between quality and speed
« Making Connectomics fast

~O3u T YA A P
I A Y
Lv‘ v“‘\ é‘ ""-l )
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Other Computer Vision tasks

Segmentation tasks usually start with computing per-pixel probabilities

Dmitry Laptev |  05/09/14 | 86



General pipeline

o)~ §
/

® is a set of features

/" Graph Cuts "\

it
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Static predefined features

= Generic features
* HoG features,
« (Gaussian blur,
« Sobel filters,
« SIFT features

= Domain-specifically designed
 Line Filter Transform
for blood vessel segmentation,
» Context Cue features
for synapse detection
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Feature learning

: _ + no feature design
= Unsupervised feature learning + data-specific features

- Bag of Visual Words, — not task-specific
« Sparse Coding,
* Autoencoders

_ _ + task-specific features
= Supervised features learning — either restricted class

- Sparse coding (quadratic), — orvery slow to train
« KernelBoost,

» Convolutional Neural Networks (CNN)

» Convolutional Decision Trees
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Convolutional Decision Trees

= Learn informative features one by one

* Tree split is a convolution with some kernel
« Maximize the relaxed information gain
* |ntroduce smoothness regularization

= Combine these features to form a decision tree

* Grow the tree while the performance increases
 Adjust the regularization while growing
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Relaxed information gain

= QOblique decision trees notation:
+ z; € R¥ Tz, =1 - vectorized image patch
* [ - vectorized convolution kernel

« Split predicate:
¢(xi, B) = [B" 2" > 0]
= Relaxed split predicate:

) 1
¢a(xi75) — 1 _I_exp(—aﬁTCEi)
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Relaxed information gain
= The notation of Information Gain is almost the same...
he={i:yi=c},Ve=1,...,C

h|é3ft — Zi;yi:C CIb\a’()q’/B)? hgght — hC — hlceft

I"Ga _ H(h) _ Zi<f;7\/(xi,5) H(hleft) _ (N _ Ziﬁgolfv(xi’ﬁ))[_[(hright)

= .. but now smooth!
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Relaxed information gain
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Regularized information gain

= Smoothness term I"...

Lo () = 1Ga(8) = A TB]13

B € arg mgx Lo (B),

= .. makes the functional ,more convex”
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Regularized information gain
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Learning one informative feature

4 L-BFGS )
Ba € argmax 1Ga(B) — Al|LBII3

o =2%0

B € arg mBaXIG(ﬁ) = lim argmaxIGq(f)

a—+00 B

* we refer to the paper for all the details
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Examples of learned features

Left: static generic features; right: features learned with CDT

Features are interpretable: there are edge detectors, curvature detectors, etc.
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Results: Weizmann Horse dataset

(a): ground truth; (b) — (e): results for different tree depth
(top): per-pixel probabilities; (bottom): graph-cut segmentation
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Results: Weizmann Horse dataset

92%

89%

86%

83% -

80%

77%

F-score

== == Task-specific
74%
= === General

71% -

68%

65%

62%
14 15 16 17 18 19

Tree depth

CDT is better than any general local technique, but worse than task-specific
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Results: Drosophila VNC segmentation

From left to right: results of anisotropic RF, CDT and CNN
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Results: Drosophila VNC segmentation

88% - A week in GPU,
. PR A year in CPU
84% - 10 hours in CPU

—

82%

80% -

F-score

~ = CNN
78% === RF+3D
76%

74%

72%
12 13 14 15 16 17

Tree depth

CDT is 4.5% better than the second-best technique and only 2.2% worse than CNN
CDT requires 10 hours training in 1 CPU, while CNN requires a week in GPU-cluster
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Summary

= Convolutional Decision Trees:
= Much faster (over-night experiment)
= Require no special hardware
= Trade-off between the speed and the quality

= Consist of three main components:
= Relaxed information gain
= Strictly convex regularization term
= |terative optimization algorithm
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Appendix D

Transformation-invariant
convolutional jungles



Feature formulation

Transformation-invariant feature parameterized by 0:

fo(z) = max 9"
. L N
Transformations considered Convolution kernel (parameters)

Lemma 1. The feature of the image X defined above is transformation-invariant if

Kernel gradient regularization

f = arg 1110i11 E(f) = arg 1110i11 M85 +
re 2
> (fo(X3) + [yi = e1] — i = c2])
it Y;=cCy Or Y; =C2 N [*] equals 1 if « is true and 0 otherwise
Two classes to split

The problem is convex, but not continuously differentiable.
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Feature examples

Examples of learned features for membrane segmentation.
Features (a)—(c) detect direct membranes, (d) denotes the
contrast of the center pixels comparing to the surroundings,
(e) and (f) detect corners and curvatures (non-straight
membranes), (g) and (h) — high-frequency features.
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Transformation-invariant convolutional jungles

1. Given a dataset and a pair of classes, we -< L ):

can find feature parameters 6; | sl |
(a) (b) (c) (d) L

o L (a) shows the root node (the whole dataset is
li = (i :.j”(‘\") > ()} ly = {7 : fo(Xi) < 0} an input). Feature parameters 6 are leamed
3. Selecting new pairs of classes, we can | anq the dataset is spiit in two subsets (input
recursively build a tree from /, and [, for two other nodes) (b). The algorithm

4. When maximum width M is achieved, proceeds until the maximum width M is

. achieved (c). Then some of the data subsets
merge similar subsets of the dataset. close in distribution can be joined together (d).

Oblique decision trees: E E
- use multivariate, not univariate splits. o = -
Decision jungles: - [ s | oy
- merge nodes when max width is achieved. {- m™ .( \“E*
™Ml o -=

oL |

2. 0 defines a predicate that splits the data:
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TICJ experiments

1. Neuronal segmentation.

Data:

- 1SB1 2012 challenge. L s - A
Two classes: Example patches from the dataset:

- membrane vs. neuron. sometimes very blurred and unclear.

Images:

. Meth 1-F- Ti

- 60 images 512x512, SE0c Score me

- 31x31 patches. RF+3d 7.9 unknown
Invariances: CDT 6.8 8h (CPU)

- rotations (24 angles). CNN 6.0 7d (GPU)
TICJ results: TICJ (ours) 6.0 4h (CPU)
- same F-score as for CNN, Best teams results: Random Forest with
- 100 times faster than CNN. hundreds of features, Convolutional

Decision Trees, Deep Neural Networks.
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TICJ experiments

2. Face recognition ":‘ . vx
Data: f,: )=

o>
- Yale face databa.se’ Example faces of one person from the dataset.
- very small (165 images).

15 classes for: Method Error, %

- 15 Individusls, Cai et al. 18.3

- 11 images per person.

|mages: Cai et al. (U) 14.7

- cropped version 32x32. Hua et al. 13.2
Invanance§: , Shan et al. 8.2

- small shifts, rotations, |

- illumination-invariance. TICJ 128
TICJ results: TICJ outperforms every team except one.

Shan et al. shows significantly better
results but uses additional training data.
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TICJ summary

Transformation-Invariant Convolutional Jungles:

- much faster than deep neural networks (4 hours vs. 7 days),
- in some tasks can match their performance,

- require no special hardware (but can also benefit from GPU),
- can work with small datasets (165 images in Yale dataset).

Consist of three main components:

- max-pooling over transformations (ensures invariance),
- strictly convex regularization term (produces smooth kemels),
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Appendix E
Tl-pooling



Tl-pooling convergence

0.16 24 angles
~—12 angles
0.14 6 angles
3 angles
S -1 angle
0.12 L =

©
o

\\I\J
aL

0.08 \ M I

0.04

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of epoch

Validation Error

results are achieved (time vs. accuracy trade-off).
 Fewer canonical positions needs to be handled by
the learning algorithm, unlike augmentation.
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