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Abstract. Connectomics based on high resolution ssTEM imagery re-
quires reconstruction of the neuron geometry from histological slides.
We present an approach for the automatic membrane segmentation in
anisotropic stacks of electron microscopy brain tissue sections. The am-
biguities in neuronal segmentation of a section are resolved by using the
context from the neighboring sections. We find the global dense corre-
spondence between the sections by SIFT Flow algorithm, evaluate the
features of the corresponding pixels and use them to perform the seg-
mentation. Our method is 3.6 and 6.4% more accurate in two different
accuracy metrics than the algorithm with no context from other sections.

Keywords: Membrane Segmentation, Anisotropic Data, Dense Corre-
spondence, SIFT Flow.

1 Introduction

Neuroanatomists face the challenging task of reconstructing neuronal structure
with synaptic resolution in order to gain insights into the functional connectivity
of brain. Performing this geometry extraction manually has been demonstrated
to be tedious, error prone and requires an impractical amount of time. Therefore,
accurate algorithms for automatic neuronal segmentation are indispensable for
large scale geometric reconstruction of densely interconnected neuronal tissue.
In this paper we focus on the segmentation problem, i.e., to annotate neuronal
structures in tissue as either membranes or the inside volume of neurons.

Currently serial section transmission electron microscopy (ssTEM) [5] is the
only available technique which can provide sufficient resolution. ssTEM data
depicts the observed volume as a stack of images (sections). This imaging tech-
nique visualizes the resulting volumes in a highly “anisotropic” way, i.e., the
x- and y-directions1 have a high resolution, whereas the z-direction has a low
resolution, primarily dependent on the precision of serial cutting.

Local appearance around the pixel in a section may be insufficient to discrim-
inate between the membrane or the inner area of a neuron. This ambiguity arises

1 Here, x and y coordinates correspond to the dimensions of a section, and z corre-
sponds to the vertical dimension of the stack.
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from the fact that electron microscopy produces the images as a projection of the
whole section, so some of the membranes that are not orthogonal to a cutting
plane can appear very blurred.

To allow automatic methods to exploit information from neighboring sec-
tions we have to resolve the correspondence problem - finding a mapping from
a neighboring section to the current one. We propose to solve this problem by
finding global dense correspondence with SIFT flow algorithm [10] and to use
the features from different sections to perform segmentation.

1.1 Related Work

There are three general approaches for anisotropic data segmentation. The first
approach focuses on the detection of neuron membranes in each section indepen-
dently [7]. The software package Fiji [1] implements this approach: first, in every
pixel the vector of features is evaluted, and then this vectors are used to train
Random Forest classifier. We use this package for feature extraction, described
in details in Section 2.3.

The second approach incorporates context from different sections without
correspondence alignment. In [8] the authors propose two terms for graph cut
segmentation, one of them incorporates context from neighboring sections. In
contrast to our algorithm, this term depends only on the feature vector evaluated
in the pixel in a direct z-neighborhood, with no correspondence alignment. As
the difference between the sections is usually quite significant, incorporating of
this term doesn’t lead to significant improvements.

The third approach [15] generates many, possibly contradictory, segmenta-
tion hypotheses in individual sections and combine them in order to optimize
the global agreement functional defined on the whole stack. In contrast to this
approach, we are not dealing with given segmentation hypotheses, but incorpo-
rate the context from neighboring sections to improve the segmentation of every
single section.

The novel contribution describes how to exploit context from neighboring
sections by solving the correspondence problem. We present it in the following
sections.

2 Proposed Method

Let τ =
{
Ik, Y k

}K

k=1
be a training set, consisting ofK images with a given label-

ing. Here Ik = {xk
p}Np=1 respresents an input image of section k, xk

p corresponds

to a pixel in section k. Y k = {ykp}Np=1 represents the labels of the corresponding

pixels p for a section k. ykp equals 1 for the class “membrane” and 0 otherwise.

Let ϕ(xk
p) be a feature vector for the pixel xk

p. Our goal is to build a segmentation
algorithm that would automatically label new sets of images.

The proposed method constructs a dense correspondence between the neigh-
boring sections and it uses features that are evaluated in all the corresponding
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pixels for classification. Our workflow is illustrated in Figure 1. For a given sec-
tion Ik we first find warpings from the neighboring sections Ik+1 and Ik−1:
Fk+1,k and Fk−1,k. Then, for every pixel xk

p we find the corresponding pixels

x̂k
p and x̌k

p. Next, we calculate features in all three pixels ϕ(x̂k
p), ϕ(x

k
p), ϕ(x̌

k
p),

concatenate the feature vectors and use this extended feature vector as input to
a Random Forest (RF) classifier. Finally, we use the probabilities returned by
the RF for Graph Cut segmentation.

2.1 Framework

Suppose we are given a non-linear warping Fk−1,k that establishes the corre-
spondence between the pixels in the image Ik−1 and Ik. We discuss a method to
obtain it in Section 2.2. We introduce two more images to the dataset: I0 ≡ I1

and IK+1 ≡ IK both for training and test sets, so that now there are two
neighbors for every section from 1 to K. Every pixel xk

p is then assigned to the
corresponding pixels in the neighboring sections:

x̂k
p = Fk−1,k(x

k
p), x̌k

p = Fk+1,k(x
k
p). (1)

Fig. 1. Based on the non-linear correspondings Fk−1,k and Fk+1,k the algorithm eval-
uates the warped images Fk−1,k(I

k−1) and Fk+1,k(I
k+1) (a). Then, feature vectors in

the corresponding pixels are evaluated: ϕ(x̂k
p), ϕ(x

k
p), ϕ(x̌

k
p) (b). After that the method

concatenates them and passes the concatenated feature vector to a RF (c). RF returns
a probability map that is segmented by Graph Cut algorithm (d).
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To incorporate the context from neighboring sections, an extended feature vector
has to capture the contextual feature information associated with the pixel xk

p

itself, as well as with the pixels x̂k
p and x̌k

p. The extended feature vectors form a
training set for a RF classifier [4].

τ =
{
[ϕ(xk

p);ϕ(x̂
k
p);ϕ(x̌

k
p)], y

k
p , 1 ≤ p ≤ N, 1 ≤ k ≤ K

}
. (2)

A trained RF returns the probability of every pixel of the image to belong to a
membrane, i.e., a probability map. Afterwords, graph cut segmentation [3] with
the probability map as unary potentials partitions the image into semantically
meaningful segments.

2.2 Dense Correspondence

To find a dense correspondence between the sections we use the recently proposed
method “SIFT Flow” [10]. SIFT Flow finds the non-linear warping F1,2 on the
pixel grid x1

p between the images I1 and I2 by minimizing the following energy:

E(F1,2) =

N∑

p=1

min
(‖s(x2

p)− s(F1,2(x
1
p))‖, t

)
+

N∑

p=1

γD(x1
p, F1,2(x

1
p))+

∑

(p,q)∈ε

min
(
αD(F1,2(x

1
p), F1,2(x

1
q)), d

)
.

(3)

E(F1,2) is comprised of a data term, a small displacement term and a smoothness
term. The first term constrains the SIFT descriptors s(x2

p) [11] evaluated in pixel
x2
p to be matched along with the descriptors evaluated in pixel F1,2(x

1
p). The

small displacement term constrains the changes between the original image and
a wrapped one to be as small as possible. D is equal to the distance between the
two pixels in a pixel grid. The smoothness term constrains the transformation of
adjacent pixels to be similar. In this objective function, truncated L1 norms are
used in both the data term and the smoothness term to account for matching
outliers and discontinuities, with t and d as the threshold, respectively. Figure
2 shows the results of applying SIFT Flow algorithm to a drosophila larva data
set. For further information we refer to [10].

Fig. 2. An example of non-linear warping between images I1 and I2 found by SIFT
Flow. Image F1,2(I

1) shows the warping applied to image I1 and image F1,2(Grid)
shows the warping applied to a grid image.
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2.3 Features

We use 626 pixel features. When we incorporate the features from the neighbor-
ing section this number increases to 1878. RF performs well even in presence of
lots of noisy features [4], therefore we need no feature selection procedure.

The whole set of features provided by [1] is used in this study: Gaussian blur,
Sobel filter, Hessian, Difference of gaussians, Membrane projections, Variance,
Mean, Minimum, Maximum, Median, Anisotropic diffusion, Bilateral, Lipschitz,
Kuwahara, Gabor, Laplacian, Structure, Derivatives. Additionally, we incorpo-
rate newly developed features that proved to be informative for neuronal recon-
struction: radon-like features [9], ray features [12] and line filter transform [13].
Also we use all the components of SIFT histogram [11] in the pixel.

2.4 Graph Cut Segmentation

We use graph cut segmentation to take into account the fact that the labels of
the neighboring pixels are more likely to have the same label. For simplicity we
drop the upper index in the following equations, as graph cut algorithm deals
with one section at a time: yp = ykp .

The segmentation task is formulated as an energy minimization problem
Ŷ = argminY E(Y ), where

E(Y )=

N∑

p=1

Eu(yp)+λs

∑

(p,q)∈ε

Es(yp, yq)+λgf

N∑

p=1

Egf (yp) + λgc

∑

(p,q)∈ε

Egc(yp, yq).

(4)

Here the first term is a unary potential that equals to the negative log proba-
bilities given by the RF in every pixel. Let i(xp) be an intensity of the image in
pixel xp. Then the second term is a smoothness term:

Es(yp, yq) = exp

(
− (i(xp)− i(xq))

2

2σ2
s

)
δ(yp, yq)

D(xp, xq)
, (5)

where δ(yp, yq) is a Kronecker function that equals 0 if yp = yq and 1 otherwise.
The gradient flux term [14] is defined as follows:

Egf (yp) =

{
max(0, F (xp)) if yp = 1
−min(0, F (xp)) if yp = 0,

(6)

where F (xp) denotes a gradient flux, F (xp) =
∑

xq :(xp,xq)∈ε < uxp,xq , vxp >,
uxp,xq represents a unit vector pointing from pixel xp to the neighboring pixel
xq and vector vxp corresponds to the gradient vector at pixel xp.

The good-continuation term [8] is defined as follows:

Egc(yp, yq) = | < vxp , uxp,xq > | exp
(
− (i(xp)− im)2

2σ2
gc

)
δ→(yp, yq)

D(xp, xq)
, (7)
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The variable im encodes the average gray value of membrane pixels and σgc is
estimated as the variance of these gray values. The factor δ→(yp, yq) = 1 for
yp = 1, yq = 0 and equals 0 for all other cases.

The minimum of E(Y ) is computed by max-flow/min-cut computation [3].
The cross-validation procedure determines the unknown parameters λs, λgf , λgc

such that the results generalize in an optimal way.
As a post-processing procedure two steps are performed iteratively: region

removing and line filter transform [13]. Region removing is performed by a series
of thresholding operations based on region properties such as Area, Solidity,
Euler Number and Eccentricity.

3 Experiments

Data. Our experiments are performed with the data provided for the ISBI 2012
challenge “Segmentation of neuronal structures in EM stacks” [2]. The dataset
[5] is comprised of a training and a test set. Each set consists of 30 sections from
a ssTEM of the Drosophila first instar larva ventral nerve cord (VNC), imaged
at a resolution of 4x4x50 nm/pixel and cover a 2x2x1.5 micron cube of neural
tissue. Training and test sets are taken from different volumes of the same VNC.

Error Metrics. There are two metrics used for the task of membrane segmen-
tation: Pixel error and Splits and Mergers Warping error. Given the estimated
labeling Ŷ and ground truth Y �, the pixel error is defined as the Hamming
distance between the two labelings

∑
p δ(Ŷp, Y

�
p ).

Splits and Mergers Warping error is a segmentation metric that penalizes
topological disagreements between the two labelings [6]. The warping error is
the squared Euclidean distance between Y � and the “best warping” L of Ŷ
onto Y � such that the warping L is from the class Λ that preserve topological
structure: minL∈Λ

∑
p δ(L(Ŷ )p, Y

�
p ).

Both types of errors are evaluated automatically on the test set when the
results are submitted to the testing server. The challenge also provides the error
value caused by discrepancy in human labeling.

3.1 Results

Our experiments are conducted with the default parameters of the SIFT flow
algorithm: γ = 0.05, t = 0.1, α = 2, d = 40. We compare the results of three
different versions of our algorithm: with no context from neighboring sections
(one slice), with direct correspondence (we incorporate the context from the
pixels being a direct z-neighbors, with no warping procedure), and with dense
correspondence found by SIFT flow algorithm.

Results are presented in Table 1. Some examples of the resulting images are
presented in Figure 3. Incorporating the context from the neighboring sections
with direct correspondence leads to improvement in terms of pixel error, but
it performs worse in terms of warping error. On the other hand, using dense
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Fig. 3. Original images: (a, d), one slice results: (b, e), dense correspondense: (c, f)

Table 1. Comparison of error results on a testing set for different versions of the algo-
rithm and the results of other teams. Human denotes the error of human annotators.

Method Pixel error Warping error Method Pixel error Warping error

Human 6.7 ∗ 10−2 3.4 ∗ 10−4 IDSIA 6.0 ∗ 10−2 4.3 ∗ 10−4

Dense ETH 7.9 ∗ 10−2 6.2 ∗ 10−4 CSIRO 8.7 ∗ 10−2 6.8 ∗ 10−4

Direct ETH 8.0 ∗ 10−2 6.5 ∗ 10−4 Utah 1.3 ∗ 10−1 1.6 ∗ 10−2

One slice ETH 8.5 ∗ 10−2 6.4 ∗ 10−4 NIST 1.5 ∗ 10−1 1.6 ∗ 10−2

correspondence leads to improvement in both objectives: 3.6% improvement in
warping error and 6.4% for pixel error.

Most of other algorithms applied in the ISBI challenge exploited the context
of only one single slice. S. Iftikhar & A. Godil (NIST) and X. Tan & C. Sun
of CSIRO Enquiries employed Support Vector Machine (SVM) as a classifier. A
team from Scientific Computing and Imaging Institute, University of Utah2 de-
signed Series of Classifiers and Watershed Tree. The Swiss AI Lab IDSIA team3

trained Deep Neural Networks which appeared to be competitive to ours and
their solution was slightly better in quantitative terms. This approach, however,
requires almost a week of training time with specialized hardware, and it is
therefore much more difficult to apply in real-world scenarios.

4 Conclusion

This paper addresses the problem of automatic membrane segmentation in stacks
of electron microscopy brain tissue sections. Since the image stacks in our appli-
cations are anisotropic, we are not able to exploit information from neighboring
sections by exploring direct z-neighborhood. This paper demonstrates, for the
first time, how to exploit context information from neighboring sections by ro-
bustly solving the correspondence problem.

We show that this problem can be effectively solved with the SIFT Flow
algorithm. Our method calculates features in all the corresponding pixels, con-
catenates their feature vectors and uses this extended feature vector for a RF
classifier. Finally Graph Cut segmentation is performed. The proposed method
is 3.6% more accurate for warping error, and 6.4% for pixel error.

2 T. Liu, M. Seyedhosseini, E. Jurrus, & T. Tasdizen.
3 D. Ciresan, A. Giusti, L. Gambardella, & J. Schmidhuber.
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