

Anisotropic ssTEM Image Segmentation Using Dense Correspondence across Sections

D. Laptev, A. Vezhnevets, S. Dwivedi, J. M. Buhmann

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1. Membrane segmentation

2. Problems

Task: automatic membrane segmentation for anisotropic stacks of ssTEM brain tissue

• Membranes that are not orthogonal to cutting plane are blured (as each image is a projection of the whole thick slice)

Sections from a ssTEM of the Drosophila first instar larva ventral nerve cord (VNC), imaged at a resolution of 4x4x50 nm/pixel (Cardona, A. et al. in PLoS Biol. 10, 2010)

• Neighboring slices are highly different one from another (data is highly anisotropic), so we cannot use methods developed for isotropic data

Key idea

- Approximately find corresponding regions in neighboring sections
- Incorporate the context from neighboring sections

3. Proposed method

- In order to incorporate the context from neighboring sections, we need to find warping operator F between sections
- We do it by finding Global Dense Correspondence with SIFT Flow (Ce Liu et al. in ECCV 2008)

for a minimum of SIFT flow energy:

• Then concatenate them to

get extended feature vector

• Train Random Forest classifier

with these extended vectors

- Gaussian blur, Sobel filter, Hessian, Gradient,
- Bilateral, Lipschitz, Kuwahara, Gabor, Laplacian, •
- SIFT descriptors, Radon-like features, Ray features,
- Line Filter Transform.

4. Graph Cut & Postprocessing

5. Results

- We use graph cut segmentation to take into account the fact that the labels of the neighboring pixels are more likely to have the same value.
- Labelling Y is then estimated as argminimum of the following energy:

 $E_{rf}(y_p)$ negative log likelihood of a RF; $E_s(y_p, y_q)$ smoothness term;

Two examples of the resulted labelling. Original image: (a), (d), no context: (b), (e), our method (c), (f)

 $\lambda_{gf} \sum_{p=1}^{N} E_{gf}(y_p) + \lambda_{gc} \sum_{(p,q) \in \epsilon} E_{gc}(y_p, y_q)$

 $E_{gf}(y_p)$ gradient flux term;

 $E_{gc}(y_p, y_q)$ good continuation term.

Posprocessing

- Filtering connected regions based on their morphological properties: Area, Solidity, Euler Number and Eccentricity.
- Line Filter Transform:

 $LFT(x_p) = \max_{l \in L_r(x_p)} \int_{z \in l} y_z dz$

Where $L_r(x_p)$ is a set of all the possible lines of the length r.

Results are based on ISBI 2012 challenge results "Segmentation of neuronal structures in EM stacks" (http://bit.ly/riGDUm).

Method	Pixel error	Warping error	Method	Pixel error	Warping error
Human	$6.7 * 10^{-2}$	$3.4 * 10^{-4}$	IDSIA	$6.0 * 10^{-2}$	$4.3 * 10^{-4}$
Dense ETH	$7.9 * 10^{-2}$	$6.2*10^{-4}$	CSIRO	$8.7 * 10^{-2}$	$6.8 * 10^{-4}$
Direct ETH	$8.0 * 10^{-2}$	$6.5 * 10^{-4}$	Utah	$1.3 * 10^{-1}$	$1.6 * 10^{-2}$
One slice ETH	$8.5 * 10^{-2}$	$6.4 * 10^{-4}$	NIST	$1.5 * 10^{-1}$	$1.6 * 10^{-2}$

Our method is **3.6** and **6.4%** more accurate in two different accuracy metrics

than the algorithm with no context from other sections.

The 15th International Conference on Medical Image Computing and Computer Assisted Intervention

