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ABSTRACT

In biological imaging the data is often represented by a
sequence of anisotropic frames — the resolution in one di-
mension is significantly lower than in the other dimensions.
E.g. in electron microscopy it arises from the thickness of a
scanned section. This leads to blurred images and raises prob-
lems in tasks like neuronal image segmentation. We present
an approach called SUPERSLICING to decompose the ob-
served frame into a sequence of plausible hidden sub-frames.
Based on sub-frame decomposition by SUPERSLICING we
propose a novel automated method to perform neuronal struc-
ture segmentation. We test our approach on a popular bench-
mark, where SUPERSLICING preserves topological structures
significantly better than other algorithms.

Index Terms— anisotropic data, super resolution, neu-
ronal reconstruction, segmentation, registration

1. INTRODUCTION

Digital imaging defines a quantization of the visual ap-
pearence of the world. The intensity of a pixel is the cu-
mulative energy that has reached the physical sensor. In
consequence, the details of a scene that are smaller than the
spatial resolution of the sensor are getting averaged away
(Fig. 1). Visually, averaging overcomes the problem of alias-
ing, but causes spatial blur and such data is called anisotropic.

Serial section transmission electron microscopy (ssTEM)
[1] of brain tissue is an important example. This method is the
only available technique that guarantees sufficient resolution
for reconstructing neuronal structures on the synapse level
and, thereby, supports the scientific goals of connectomics
[2] to understand brain functions. This technique renders the
volume in a highly anisotropic way — the resolution across
vertical dimension of the stack (thickness) is much lower than
that of the horizontal dimensions.

We propose a method called SUPERSLICING (Super res-
olution frame Slicing). It reconstructs isotropic hidden sub-
frames from a sequence of anisotropic frames, thereby in-
creasing the depth resolution. This reconstruction states an
inherently ill-posed problem as there exists an infinite number
of possible sub-frames that can produce the same observed
frame. We propose a regularisation that uses the informa-
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Fig. 1. A schematic illustration of our approach: a) neuronal
structure in brain tissue sample; b) the tissue sample is cut
and captured with ssTEM, producing anisotropic frames with
blur; c) the proposed method SUPERSLICING reconstructs
hidden sub-frames with sharp details.

tion from the neighboring frames to resolve these ambiguities.
The problem is formulated as energy minimization which ap-
pears to be convex and therefore guarantees the global op-
timum. The objective function is guided by two principal
considerations: i) the physical constraints of the imaging pro-
cess; ii) the structures in sub-frames should follow the corre-
spondence between structures in the neighboring frames. To
formalize the latter SUPERSLICING uses optical flow to find
the correspondences between neighboring frames and inter-
polates them into sub-frames.

SUPERSLICING enables us to propose a novel automated
method to perform neuronal structure segmentation (section
4). It recovers the crisp image of these structures and facil-
itates recognition of neural structures. The experiments on
Drosophila first instar larva ventral nerve cord (VNC) dataset
[1] demonstrate significant improvement over the baselines.

2. RELATED WORK

The first group of related techniques for frame enhancement
interpolates between two neighboring frames. The simplest
approach is a linear frame interpolation, which, although sim-
ple and fast, produces blurry results even when the initial
frames are sharp. A more advanced technique is based on
optical flow estimation and frame warping [3]. However, in
anisotropic data, frames are often reconstructed as blurred as
initial frames because it takes into account no constraints on
how imaging is performed. In contrast, SUPERSLICING re-
constructs the changes within the frame, therefore recover-
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ing crisp details in each sub-frame. We use both of these ap-
proaches as baselines in our experiments.

Another approach to solving the problem of spatial en-
hancement relies on using multiple ssTEM projections [4].
Unlike these methods, we are considering a more general case
and use only one sequence of frames from one ssTEM stack.
And the third type of approach is based on exploring the re-
currence of small self-similar patches in space and time [5].
However, these methods assume that similar patches appear
repeatedly within the frame sequence which is almost never
the case for neuronal structures. In contrast to these methods
we do not rely on high recurrence of self-similar patches and
therefore, we solve a more general problem.

Neuronal structure segmentation and recognition has
two general approaches. The first approach focuses on the
detection of neuron membranes in each section independently
[6] based only on local information around every pixel. The
second approach incorporates context from different sections
[7] to resolve ambiguities that cannot be resolved within one
section. The biggest challenge for the segmentation algorithm
is posed by the blurry membranes (see Fig.3), that are often
the result of anisotropy. We propose a novel method that first
recovers the sharp sub-frames of a slice using SUPERSLIC-
ING and then uses them to perform segmentation. As the re-
covered sub-frames contain finer details the segmentation al-
gorithm is able to identify the neuronal structures with higher
accuracy than methods without SUPERSLICING.

3. PROPOSED METHOD

Let Y n be the observed sequence of frames, n ∈ [1, . . . , N ],
ynp - pixel p of the frame Y n, i(ynp ) - the intensity of pixel
ynp . Let ε(xnp ) be a set of neighbors of pixel xnp . We want to
reconstruct L hidden sub-frames Xn,l, l ∈ [1, . . . , L] of the
observed frames Y n.

3.1. Optimization task

We define optimization problem 1 to approximate hidden sub-
frames as an energy minimization problem for given corre-
spondences Ω. The energy 1 consists of three terms. The
first term, the data term, represents the physical constraints
that the observed frame should be equal to the average of the
hidden sub-frames: i(ynp ) = 1

L

∑L
l=1 i(x

n,l
p ),∀ynp ∈ Y n.

The second term promotes smoothness by favoring an
alignment of pixel’s intensities in the sub-frames along the

structure’s progression between the frames. The algorithm
proceeds by finding correspondences between the anisotropic
frames using optical flow and then interpolates them into the
sub-frames using bilinear interpolation (see Sec.3.2).

The third term encourages the resulting sub-frames to be
smooth to avoid visual artefacts. This goal is achieved by
minimizing the difference of intensities between neighboring
pixels.

Here λ and γ are Lagrange parameters that control
the degree of regularization versus data fidelity. This is a
quadratic functional with respect to i(xn,lq ) and therefore we
can achieve global optimum with any convex optimization
technique (we used interior point method).

3.2. Corresponding pixels

How can we find the set Ω of corresponding pixels? A cen-
tral idea of this paper is to utilize the context of neighboring
frames for reconstructing sub-frames. We first find the cor-
respondences between the pixels in neighboring frames and
only after these constraints have been identified, we interpo-
late these correspondences through sub-frames.

Assume that we observe the sequence of three images:
Y 1, Y 2 ≡ Y , Y 3. For every pixel y2

p of y2 we find the cor-
responding pixel ykp from image yk, k ∈ {1, 3} by finding
the set ΩkY = {(y2

p, y
k
q )|∀y2

p ∈ Y 2} minimizing optical flow
energy:
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Here α is a model parameter, ρ(yp, yq) is euclidean distance
between pixels yp and yq in pixel grid. Optical flow results in
good correspondences, even though it allows only integer dis-
placements, because the membrane displacements are smooth
and need to be estimated only up to the thickness of a mem-
brane, which is on average 3 to 7 pixels.

As soon as we have corresponding sets Ω1
Y and Ω3

Y , we
can draw a curve ϕ through y1

p to y2
q and y3

t for every two
correspondings (y1

p, y
2
q ) and (y2

q , y
3
t ). Then we interpolate the

pixels curve ϕ crosses in hidden sub-slices: x̂1
ϕ(1), . . . , x̂

L
ϕ(L).

Then Ωϕ = {(x̂lϕ(l), x̂
l+1
ϕ(l+1))|l ∈ [1, . . . , L − 1]}. The final

set Ω is a union of all sets Ωϕ.
If pixel x̂n,lp does not fit to the pixel grid, we rewrite

it as a weighted sum of direct neighbors in a grid x̂n,lp =∑
x∈ε(x̂n,l

p ) w(x, x̂n,lp )x, w(.) ≥ 0,
∑
x∈ε(x̂n,l

p ) w(x, x̂n,lp ) =
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Fig. 2. An illustration of the SUPERSLICING pipeline for neuronal structures segmentation. Based on the non-linear corre-
spondings between neighboring frames Y 1, Y 2 and Y 3 (a) the algorithm evaluates hidden sub-frames X2,1, X2,3, X2,3 (b).
Then, feature vectors in sub-frame pixels are evaluated: ϕ(xn,1p ), . . . , ϕ(xn,Lp ) (c). After that the method concatenates them and
passes the concatenated feature vector to a RF classifier (d) that returns the final segmentation (e).

1. We then write the second set of constraints enforcing
that corresponding pixels of sub-frames assume the same
intensity:∑

x∈ε(x̂n,l
p )

w(x, x̂n,lp )i(x) =
∑

x∈ε(x̂n,l+1
q )
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q )i(x),

∀(x̂n,lp , x̂n,l+1
q ) ∈ Ω, where Ω is a set of all pairs of corre-

sponding pixels.

4. NEURONAL SEGMENTATION

We propose a method that first reconstructs hidden sub-
frames and uses features that are evaluated in pixels of recov-
ered sub-frames for classification. Our workflow is illustrated
in Figure 2. For a given section Y n we first recover sub-
frames Xn,1, . . . , Xn,L with SUPERSLICING. Then, for
every pixel xn,lp , l ∈ [1, . . . , L] we calculate features ϕ(xn,lp ),
concatenate the feature vectors and use this extended feature
vector as input to a Random Forest (RF) classifier [8].

We select the method parameters γ and λ as well as opti-
cal flow parameter α with cross validation. We use RF with
255 trees and perform training on 10% of all pixels. As fea-
tures we use per pixel SIFT histograms [9] and line filter
transforms [10] with different parameters.

5. EXPERIMENTS

We use publicly available segmentation challenge dataset [1].
Figure 3 qualitatively shows the results of our algorithm for
hidden frame recovery. Membranes recovered in the sub-
frames using SUPERSLICING are much sharper than the ones
produced by the baseline methods.

To quantitatively test the approach for neuronal mem-
brane segmentation presented in section 4, we compare seg-
mentation results with two more methods: RF segmentation
based on only features evaluated in one layer [6], and RF seg-
mentation based on context from neighboring sections [7].
For fair comparison we implement the same set of features

Method Warping error
One-section segmentation [6] 2.876 ∗ 10−3

Three consecutive sections [7] 2.693 ∗ 10−3

SUPERSLICING segmentation 2.384 ∗ 10−3

Table 1. Warping error on a testing set for one-section seg-
mentation, segmentation based on three consecutive sections
and for SUPERSLICING. Our method outperforms the base-
line methods by 17% and 11%, respectively.

for all three methods and use the same RF structure with no
post-processing to measure the impact of SUPERSLICING.

As we care about neurons topology, but not pixel-wise
reconstruction, we also compare the results in terms of warp-
ing error [11], that measures the topological disagreement be-
tween proposed labeling and a reference labeling. For further
information about the warping error the interested reader is
referred to [11]. The results are summarized in table 1. The
results on sub-frame stack produced by SUPERSLICING are
17% better than one sections segmentation and 11% better
then the results based on three neighboring sections.

6. CONCLUSION

This paper addresses the problem of anisotropic data restora-
tion in ssTEM microscopy. Our main contribution is a
method called SUPERSLICING that decomposes an observed
anisotropic frame into a sequence of hidden isotropic sub-
frames. The proposed method requires only two neighboring
frames to performs the decomposition and it does not assume
any special properties of the data.

SUPERSLICING incorporates two types of constraints.
One of them represents physical properties of the involved
imaging technique and the other constraint encourages pixels
that lie along the progression of objects between the frames
to be of the same intensity. In order to find corresponding
pixels we first find optical flow between observed frames and
interpolate the flow into the sub-frames.

Based on SUPERSLICING we develop an algorithm for an
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Fig. 3. A qualitative comparison of our method with the baselines. Column (a) shows original anisotropic sections. Three
following column shows L = 3 interpolated frames estimated with: linear interpolation (b), optical flow warping (c), SUPER-
SLICING (d). Arrows point out blurred membranes that are better visible after sub-frame reconstruction.

automatic membrane segmentation in ssTEM sections. We
show how to increase the performance of the segmentation
algorithm by decomposing an observed anisotropic frame
into isotropic sub-frames. We demonstrate the quality of
the method on publicly available dataset where it performs, in
term of warping error, 17% and 11% better than the baselines.
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