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Abstract

Many Computer Vision problems arise from informa-
tion processing of data sources with nuisance variances like
scale, orientation, contrast, perspective foreshortening or —
in medical imaging — staining and local warping. In most
cases these variances can be stated a priori and can be used
to improve the generalization of recognition algorithms.
We propose a novel supervised feature learning approach,
which efficiently extracts information from these constraints
to produce interpretable, transformation-invariant features.
The proposed method can incorporate a large class of trans-
formations, e.g., shifts, rotations, change of scale, mor-
phological operations, non-linear distortions, photometric
transformations, etc. These features boost the discrimina-
tion power of a novel image classification and segmentation
method, which we call Transformation-Invariant Convolu-
tional Jungles (TICJ). We test the algorithm on two bench-
marks in face recognition and medical imaging, where it
achieves state of the art results, while being computation-
ally significantly more efficient than Deep Neural Networks.

1. Introduction

Human visual perception proves to be extremely stable
to a broad class of variations in scenes. If objects in im-
ages are rotated, or scaled, or even non-linearly distorted —
in most cases we still can recognise these objects. If we
are in advance aware of transformations that can occur in
a dataset, then this information can be used as prior to de-
sign a better recognition algorithm with higher generaliza-
tion capacity and therefore, higher accuracy than agnostic
learners. Being capable of generalizing over different trans-
formations is a very important property of any Machine
Learning approach, and especially of Computer Vision al-
gorithms.

The set of transformations to be considered highly de-
pends on the task that one has to solve. Some common
examples are presented in figure 1, but a possible transfor-
mation set is neither limited to these examples, nor needs to
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Figure 1. Example of transformations ¢ that are usually considered
in Computer Vision tasks applied to a handwritten digit ’5” from
MNIST dataset [ 16]. (a) shows the original image X, (b)—(h) show
different transformation results ¢(X): rotation (b), shift (transla-
tion) (c), reflection (d), scaling (e), morphological operations (f),
non-linear distortions (g), brightness, contrast change (h).

include all of them. For example, rotation-invariance should
be used wisely for digit recognition task, since rotating the
digit ”6” by 180° could lead to its confusion with ”’9”. How-
ever, smaller rotations of up to £15° proved to significantly
improve accuracy in the MNIST classification benchmark
[6]. Scale-invariance can also harm classification perfor-
mance if object size is at least somehow informative, for
example, in case of classifying healthy cells from cancer
cells [24].

Once a set of transformations for a given task is known
and fixed, there are three main ways to incorporate this
prior knowledge: (i) change the dataset itself, (ii) use
transformation-invariant features or (iii) modify the learn-
ing algorithm. Arguably the most popular approach is the
first one, which enlarges the original dataset by adding the
images that were transformed according to our prior beliefs.
This strategy allows the recognition algorithm to observe all
the instantiations of the data and, in case of flexible models
to adapt to all considered transformations.

Enlarging the dataset, however, implies also to signif-
icantly extend the training time and it requires extensive
computational resources. But very large data sets pose
only one of the problems: to cope with larger variations
in datasets, data analysts usually have to increase the num-
ber of parameters in modeling, requiring even more training
time, more memory, and posing the risk of over- or under-



fitting. Therefore, current research investigates advanced
techniques to avoid this pitfall, as reviewed in section 2.

The proposed method is inspired by the idea of the pool-
ing operation, that preserves some local invariances and
seems to be biologically plausible [22]. We follow this
idea to incorporate prior knowledge about the transforma-
tions through learning transformation-invariant features of
the images. We define these features through the convo-
lutional kernels, but instead of convolving the image itself
with the kernel, we propose to compute the maximum over
many convolutions: with the given image, and with all the
considered transformations of this image. This nonlinear
operation assures transformation-invariance, as the value of
the maximum is exactly the same for the original image,
and the image that was transformed (see lemma 1 for more
details).

Section 3.2 discusses how these features can be effi-
ciently trained in a supervised manner to fit the needs of
the specific task, and how they can be regularized to get in-
terpretable transformation-invariant features that generalize
well.

The proposed algorithm TICJ uses this transformation-
invariant feature learning procedure to build an image clas-
sification algorithm (or per-pixel segmentation algorithm).
This is done by iteratively learning the features and com-
bining them together in a feedforward modification of the
Decision Jungles algorithm [26]. Comparing to Decision
Trees [21], this algorithm proves to better prevent overfit-
ting, and also efficiently works with limited memory con-
straints. The combination of the proposed feature learning
algorithm and the proposed modification of Decision Jun-
gles allows us to achieve state of the art results with modest
training time, as described in section 3.3 in detail.

The main properties and contributions of the proposed
method are the following:

e Transformation-invariant feature learning allows us to
incorporate any types of transformation invariances as
prior constraints. This method results in good gener-
alization without enlarging the original dataset size or
the parameter space.

e Regularization is enforced in two different ways by the
learning method and it serves the purpose of producing
interpretable features. These features are easy to de-
bug, since they are defined through convolutional ker-
nels and they support visual inspection (see figure 2).
Regularization also helps when the dataset is small: as
we show in the experimental section 4.1, TICJ can ef-
ficiently be applied for datasets starting from only tens
of images.

e The final classification algorithm is computationally
very efficient and, unlike many state of the art tech-
niques, can be easily run on a single CPU within a

modest training time. In our experiments, the proposed
method is up to two orders of magnitude faster than,
for example, Deep Neural Networks, while achieving
state of the art classification performance (see section
4.2).

e The method has only few hyperparameters, and we
show in section 3.4 how they can be efficiently tuned.
This simplicity of the method makes it highly suitable
for plug-and-play experiments in comparison to many
other modern Computer Vision techniques.

We also propose a modification of the node clustering
technique for Decision Jungles and thereby, we overcome
the problem of global clustering that produced poor results
as mentioned in the original Decision Jungles paper [26].
This contribution is discussed in more details in section 3.3.

2. Related work
2.1. Predefined features

One of the easiest ways to incorporate partial
transformation-invariances is to use special types of prede-
fined, often “hand-crafted” features, i.e., the scale-invariant
feature transform (SIFT) [17] or its rotation-invariant mod-
ification RIFT (rotation-invariant feature transform) [14]
have proved to boost performance in a broad range of image
processing applications and imaging modalities.

These features are designed to be general-purpose and
transformation-invariant, and they satisfactorily solve the
task in many cases. However, they are limited in two ways:
they only can incorporate very specific transformations, and
they do not adapt to the task being solved.

One of the ways to overcome the second deficit is to
design hand-crafted features for the specific task. Line
filter transform [23] for blood vessel segmentation is one
of the examples of domain-specific features, which is also
rotation-invariant. But designing the features manually is
time-consuming and expensive while not always possible.

The proposed method, in contrast to predefined features,
not only learns the features in a supervised manner, but also
allows one to incorporate any types of invariances.

2.2. Feature learning

Instead of designing features for every different task, one
could learn these features automatically such that for every
dataset a set of learned features would be the most represen-
tative and/or discriminative. Four approaches that follow
this idea are “’bag of visual words” (BOVW) [20], Convolu-
tional Decision Trees (CDT) [12], Sparse Coding [28] and
different types of Neural Networks.

BOVW does not distinguish the positions in which the
”visual word” occurs, and therefore it is a shift-invariant



method. Rotation-invariance can be achieved [29] with just
few modifications.

CDT trains the features as convolutional kernels, which
resembles our proposal. In contrast to CDT, we do not di-
rectly optimize the information gain of the split defined by
the features, but solve a convex approximation to it formu-
lated as a regularized least squares problem. This optimiza-
tion produces comparable results to the information gain
maximization procedure, but allows us to find the solution
significantly faster. Furthermore, CDT does not allow to
incorporate transformation-invariance.

Sparse Coding algorithm can be also modified to learn
overcomplete shift-invariant image representation as pre-
sented in the paper [28]. We consider neural networks in
the following section.

The proposed algorithm incorporates various ideas of the
above methods to learn features from data and, simultane-
ously, to adapt to the specific task. But unlike both BOVW
and Sparse Coding algorithms, it allows us to incorporate
many different types of transformations.

2.3. Transformation-invariant neural networks

Deep Neural Network architectures are the richest model
classes used nowadays in Computer Vision and they enable
very impressive results in many tasks. Because of their rich-
ness, many modifications can be implemented to incorpo-
rate different types of prior knowledge in the training pro-
cess itself. Not surprisingly, transformation-invariance is
actively discussed also in the field of “Deep Neural Net-
works”.

The most commonly used property of Convolutional
Neural Networks that enables some transformation invari-
ance is a subsampling layer [15] with max-pooling. Be-
cause the maximum is taken over the neighbouring pixels,
local one-pixel shifts usually do not change the output of the
subsampling layer. A more general pooling operation [22]
allows one to also consider local rotation and scale changes.
As usually many layers are stacked in a hierarchy on top of
each other, the window size for local invariances increases.

Other techniques that support invariances to a rich trans-
formation class include topographic filter maps [1 1] (learns
features invariant to rotation, shift and scale changes) and
the algorithm presented in [27] (local transformations that
can be approximated as linear transformations). However,
neither of these approaches can learn arbitrary set of trans-
formations. This challenge has been already discussed in
section 1. Another simple approach that works without en-
larging the dataset and the model size is presented in [7]
and [6]. The idea is to train different models with the same
topology but using different datasets: the original dataset,
and the transformed datasets (one model for every transfor-
mation considered). Then either the weights of these mod-
els are averaged to produce one new model, or the outputs

of the networks vote for a majority, forming an ensemble of
models. This last approach is widely used and we compare
our algorithms to it as a baseline in one of our experiments
(see section 4.2).

3. Method description
3.1. Notation

Let us consider an image classification dataset with K
classes that consists of [V images. Let X; € R“*" be the i-
th image in this dataset represented by a square real-valued
matrix of pixel intensities, where ¢ = 1,..., N and w is
the size of the image. For simplicity we consider square
images, however, the method naturally generalizes also to
rectangular images.

Every image X; has an assigned class y; € {1,...,K}.
The task of an image classification algorithm is to return a
class estimate ¢ for a new unobserved image X .

To address segmentation tasks, we employ the com-
monly used patch classification strategy: consider X; to be
a patch around pixel ¢, and y; to be the corresponding pixel
class (segment index). Then, the algorithm should return
the class estimate for every pixel based on the appearance
of the surrounding w X w pixel area. The patch size w is
an application dependent parameter that we select by cross-
validation.

In homogeneous coordinates, the image X is described
by a vector x; € R®*+1 with T =1

Assume P to be a set of all considered transformations.
® = {¢1,...,67}, where ¢; denotes a transformation
function and T specifies the number of transformations. If
X is an image of the dataset, then ¢(X) represents a trans-
formed image of the same size w X w. For simplicity of no-
tation, ¢(x) also denotes an extended vectorized represen-
tation of the transformed image ¢(X). ® always includes
the identity transformation ¢g : ¢o(X) = X.

The reader should notice that ¢ can represent either one
of the simple transformations shown in figure 1, or the
combination of these transformations. I.e. ¢3 could be
the composition of ¢; and ¢o: ¢35 = ¢1 o ¢ means that
@3(+) = ¢1(p2(+)). Because of a discrete image representa-
tion in computers, the set of possible transformations can al-
ways be considered finite, even though it can be very large.

3.2. Transformation-invariant feature learning

3.2.1 Feature definition and properties

As discussed in section 1, we parametrize a feature with a
convolutional kernel € R***+1 The value of the feature
for an image X is given by:

fo(z) = max 67 ¢(x) (1)

pe®



Because of the maximum operation, this equation in
most cases gives exactly the same result fy(z) for the image
X itself, and for the transformations of this image ¢(X).
Lemma 1 formulates the conditions on the set ¢ for which
this holds true.

Lemma 1. The feature of the image X defined in equa-
tion 1 is transformation-invariant if the set ® of all possible
transformations forms a group, i.e. satisfies the axioms of
closure, associativity, invertibility and identity.

Proof. In order to prove this statement, the value of the fea-

ture has to be the same for all the transformations of the

image. Since ® always contains an identity transformation,

we can compare the value of the feature with the value of

the feature for the identity transformation ¢g. So we need

to show that fo(¢(X)) = fo(¢o(X)) = fo(X), Ve € ©.
For any transformation ¢) € ® the following holds:

fo(¥(z)) = max 0T p(Y(x)) = 0" p().

max
de® p=¢oy: P

The closure axiom implies

{potp:pecd}C O 2

On the other hand, invertibility axiom assure the exis-
tence of an inverse, V1) € ®,3¢~!. Furthermore, ® D
{poy~t ¢ € ®} =: U (as for U we select only the ele-
ments of the set ® that can be represented through a com-
position with 1),

Therefore,

{¢pop:9e®} 2 {poy:¢ec¥}=
(poplo:pcd)={p:9pc®}=0. (3

Equations 2 and 3 show that {¢p o) : ¢ € P} = ® and
therefore, the set over which the maximum is taken stays
the same, which shows that fy(d(X)) = fo(X). O

The statement of the lemma is satisfied for many Com-
puter Vision tasks: basically all the simple transformations
shown in figure 1 as well as their compositions form a
group. The most common examples of the transformation
sets that do not satisfy this property include local shifts (jit-
tering) and local rotations. For example, if one wants to
consider only one pixel shifts, then the closure axiom of
the group does not hold: one pixel shift applied twice gives
two-pixel shift, which is not in a transformation set.

However, one can easily modify the definition of the fea-
ture such that it stays transformation-invariant with respect
to local transformations:

Jo(@) = max (4 (x)) “)

This formulation allows us to relax the closure axiom of
the whole set to the closure of only two elements of the

Figure 2. Examples of different kernels 6 learned with TICJ algo-
rithm applied to a neuronal segmentation dataset. One could see
that the features are relatively meaningful: features (a)—(c) detect
direct lines (this correspond to straight membranes in the dataset),
(d) denotes the contrast of the center pixels comparing to the sur-
roundings, (e) and (f) detect corners and curvatures (non-straight
membranes), (g) and (h) — membrane conjunctions and textures of
neuronal tissue (high-frequency features).

set. Features defined by equation 4 are invariant to every
transformation in ® (but not in {¢p o ¢ : ¢,¢p € ®}) if
the transformations set ® contains all the inverse elements
and the identity element. The proof of the last statement
stays almost the same, but with a different set over which
the maximum is taken.

Therefore, if one wants to consider only local transfor-
mations and lets ® to contain, for example, one pixel shift
to the left and to the right (together with an identity trans-
formation), then the set over which the maximum should be
taken includes shifts by one or two pixels.

In the following, we consider the definition 1 of a feature
to simplify our notation.

3.2.2 Feature learning

Lemma 1 shows that the features formulated in equation 1
are transformation-invariant. However, one also needs to
establish the procedure of learning the parameters 6 of the
feature.

Assume that we select two classes ¢1,c2 € [1,..., K]
and we want to separate the images of these classes. We
propose to find the parameter vector 6 by solving the fol-
lowing optimization problem:

0= argmain E0) = argmein M|TO||3 +

> (fo(X5) +

11 Yij=cC1 Of Y;=C2

lyi = c1] — [yi = e2])® (5)

Here fy(x) is a feature defined in 1 and [-] refers to Iver-
son brackets, that are equal to 1 if - is true and zero oth-
erwise. Following this notation, [y; = ¢1] — [y; = c2] is
equal to 1 if y; = ¢ and equal to —1 if y; = co. Matrix
I € R2ww=Dx(w’+1) ig 3 matrix of a 2D differentiation
operator in a vectorized space, that is a Tikhonov regulariza-
tion matrix. Penalizing the gradient of the kernel enforces
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Figure 3. Partial visualization of the feature learning process. For
all the images =, we compute the transformations ¢(z),V¢p € ®
(a). Every image after transformation is convolved linearly with
the current kernel vector 6 (b). That gives the response for every
transformation, from which we select then the maximum fo(x)
and the corresponding transformation ¢ that gives maximum re-
sponse (c). These values are then used to compute the functional
value and the gradient of the functional value (d) when combined
with the regularization term (e). The gradient step % then updates
the value of the feature parameters 6.

the kernel to be smooth. A is a regularization parameter that
controls the trade-off between the goodness of separation
and the smoothness of the kernel learned.

Regularization serves two main goals. First of all, it
ensures interpretability of the inferred kernels (see figure
2). Second, from an optimization point of view, a strictly
concave and differentiable regularization term increases the
convergence speed of the gradient descent optimization al-
gorithm.

In order to efficiently find the minimum of E(6), we also
compute the subgradient of the functional 5:

dE
= 3 200X+ = ai] ~ [ = ea]) ()
orYimen
+2XI71r0 (6)
where ¢; = argmaxgecq 07 ¢(X;) — is a transformation

that gives the maximum response for an input image X;.

Based on the formulas 5 and 6 one can implement an
optimization algorithm that finds the optimum value of 6
for a given dataset { X;, y; } and for two selected classes c;
and co. It is important to notice that the problem 5 is not
continuously differentiable because of the maximum in the
definition of fy(X), however, it is convex and therefore one
is guaranteed to find the global optimum of the problem.
In our experiments we explored different optimization tech-
niques, but finally selected the L-BFGS optimization sub-
routine [19] as it always yielded the highest convergence
speed for the tasks we consider. The constructive version of
the algorithm is sketched in figure 3.

One important question is how one selects ¢ and c3. We
propose to take them at random with the probabilities p,
proportional to the presence of the class c in the dataset:

pe ~ |{% : y; = c}|. This choice assures that we try to sepa-
rate the largest classes with high probability, but also leaves
room for randomization of the algorithm, which is impor-
tant for ensemble learning discussed in section 3.3. There,
we also discuss the problem of selecting the regularization
parameter .

3.3. TICT and TICJ: Transformation-Invariant
Convolutional Trees and Jungles

Section 3.2 shows how to learn the parameters of a
transformation-invariant feature that splits the dataset into
two subsets: one subset consists of the images X;
fo(X;) > 0, another of images X; : fo(X;) < 0. That
means that the feature defines a split predicate on the space
of images, and therefore can be used in algorithms such as
decision trees.

This section discusses how to learn these features and
combine them in an iterative feedforward manner to build a
final image classification algorithm.

3.3.1 Transformation-Invariant Convolutional Trees

Following the idea of decision trees [21], we learn one fea-
ture and then split the whole dataset into two subsets ac-
cording to the predicate defined by this feature. To each of
the subsets the same idea can be applied recursively until
a termination criterion is satisfied. We call this algorithm
Transformation-Invariant Convolutional Trees (TICT).

Formally, we start with a root node that accepts the
whole dataset {X;,y; : ¢« = 1,...,N} as input, and
trains 0 to define a root feature. Then we split the train-
ing dataset into subsets I; and lo: 1 = {i : fo(X;) > 0},
lo = {i: fo(X;) < 0}. For this first layer we define a set
of leaves L = {I,r}.

Then each new layer is built recursively as follows.

e Forevery leaf [ € L we train new feature parameters 6,
but using only a subset of the original dataset defined
by indices in [.

e Then we splitl to l; = {i :
Iy = {Z RS l,fe(XZ) < 0}

i €1, fo(X;) > 0} and

e If |l1| > 0 and |l5] > O (the split is non-trivial), then
the new leaves set is defined as L U {l; 1,02} \ {j,
otherwise it does not change.

e If [l1] = 0or|ls] = 0,but |[{c: Ji € Isty; =
c}| > 1 (this denotes that the leaf ! contains objects
of at least two different classes), that means that the
features are not flexible enough to separate the dataset
and we increase its flexibility by decreasing the value
of A (for example, multiply it by 2).
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Figure 4. A visualization of TICJ training process. Each node is
represented with feature parameters 6 and a histogram h of input
object classes (for simplicity we consider three classes here). (a)
shows the root node, for which the whole dataset is an input. Using
the learned feature fy — the dataset is split in two subsets to serve
as input for two other nodes (b). The algorithm proceeds by split-
ting the dataset until the maximum number width M is achieved
(c). Then some of the data subsets can be joined together with a
histogram clustering technique (d).

We add layers with the above procedure until the max-
imum number of iterations is reached. If at some iteration
step [{c : i € Ist.y; = c¢}| = 1foreveryl € L —the
training dataset is perfectly separated and the algorithm ter-
minates.

The classification of new image X with TICT is achieved
in exactly the same way as with decision trees: we go from
the root node following the splits to the leaves, and then
return the majority class of the objects in this leaf. The pro-
posed algorithm is similar to oblique decision trees [18].
However, unlike oblique decision trees, the features in our
case do not form a linear combination of all the pixel inten-
sities, and therefore TICT does not belong to this category.
We use TICT for comparison, but the final algorithm uses a
modification of it inspired by Decision Jungles [26].

3.3.2 Transformation-Invariant Convolutional Jungles

There are two main problems with the previous approach:

o first, it easily overfits the data if the number of splits is
large and the sizes of the leaves are small;

e second, the size of TICT grows very fast, causing ma-
jor efficiency and memory issues (if we add 20 layers,
in worst case we need to train 22! features).

In order to overcome both of these issues, we propose
TICJ algorithm based on the modification of the Decision
Jungles algorithm. The idea of TICJ is very simple: af-
ter adding one layer, we perform the clustering of leaves in
L and join similar leaves together where the similarity of

leaves is measured as the similarity of the histograms of the
classes present in a leaf. We merge leaves only if the leaves
set size |L| is greater than some constant M. We also gen-
erate a new layer in a feedforward manner, so after joining
the leafs, we do not retrain the features. That allows us to
spend up to two times less training time, and produces very
similar results to a two-step procedure in our experiments.
The scheme of the algorithm is sketched in figure 4.

The second extension of the original decision jungles
paper is how we perform clustering. The paper [26] sug-
gests two clustering technique: a global and a randomized
greedy, and claims that a global clustering technique per-
forms worse. We experienced very similar behaviour and
discovered a possible reason behind that: very often global
clustering joins the leafs that were separated just before with
the feature learned. For example, quite a common case is
that 0 learned in one layer splits [ into /; and I, and then the
clustering algorithm groups [y and /5 again together. That
means that in the next layer # will be trained again with
the same data, and with high probability will yield the same
results, getting the algorithm stuck in this loop.

To overcome this issue, we propose to forbid the
clusters consisting of two leaves that were just split.
That can be easily implemented by just setting the
distance of these leaves to be infinite before exe-
cuting the clustering algorithm. Formally we define
the distance between leafs D(l;,1;) as either +oo if
l[; and [; originate from one set I, or D(l;,l;) =
2 (Dgr(hjl|hi) + Dir(hi||hj))  otherwise. Here
Dkr(-]|-) stands for Kullback-Leibler divergence [10],
and hj = H{’LGZJ Zyi:1}|,...,|{i Elj S Y :K}H —
a histogram representation of the leaf classes present in a
leaf [;. Then we apply agglomerative clustering [8] with
the defined metric to get clusters 1, ..., M and redefine the
leaf set to be L = {Ul€ cluster 105 + - - Ul cluster Ml}

One can also construct an ensemble of trained jungles.
Such an ensemble may slightly increases the recognition
performance in some cases and reduces the variance of the
resulting classifier. This improvement is caused by the ran-
domness involved into constructing every instance of TICJ:
classes for separation are taken at random. One can also
use only a subset of objects or a subset of transformations
for TICJ training to further diversify the trained models and
benefit more from averaging their outputs.

3.4. Algorithm parameters discussions

In this section we demonstrate how to better understand
the parameters and how to set them wisely without harming
the performance and the efficiency of the algorithm. There
are three main parameters in the proposed algorithm: (i) a
set of transformations ®, (ii) the regularization parameter A
considered during feature learning, and (iii) the maximum
TICJ width M.



The maximum number of iterations is also a hyperpa-
rameter, but it is less important as it does not need to be
specified in advance: if the performance on the validation
dataset is still improving, one can always add more layers.

® — a set of transformations — depends on the task be-
ing solved and almost always can be selected in advance, as
discussed in section 1. We also want to note that ® partly
serves the regularization purpose. When the size of the set
® increases, then the learned feature fy is expected to have
less degrees of freedom. Therefore one should be careful
when selecting a large set ® as it can prevent flexible fea-
tures from being learned.

This model selection choice is, however, not an issue
when we determine the regularization parameter A\. One
can start with a large value of A to learn very smooth ker-
nels corresponding to low-frequency features. As we dis-
cuss in section 3.3, if learning 6 gives only trivial splits, we
decrease the value of A\ (usually just multiply it by %) and
start to discover also high-frequency features. That gradu-
ally increases the complexity of the features as we go down
the layers hierarchy.

The maximum width of the jungle M is the only remain-
ing parameter that defines the topology of TICJ. This pa-
rameter also significantly contributes to the control of the
bias-variance trade-off: if it is small, it prevents overfitting,
but the algorithm usually appears to be less flexible. If it
is chosen too large then TICJ adapts to fluctuations. We
propose to use the following heuristic:

e start with a small value of M (we usually take M =
3K, where K is the number of classes),

e train the algorithm by adding more layers and observe
the validation error;

e if the validation error stops decreasing, enlarge M
without retraining the whole TICJ and continue adding
layers (just the new layers would be wider).

This process can be repeated until the algorithm starts over-
fitting, which is usually indicated by the increase in a vali-
dation set error.

4. Experiments

In this section we present the experimental results on
two publicly available computer vision datasets: (i) the Yale
face recognition dataset [2] and (ii) the Neuronal structures
segmentation dataset [4]. Both datasets include large in-
tra class variabilities (see examples in figure 5), but also
contain some transformation-invariances, which we exploit
with the proposed algorithm.

In face recognition benchmark we achieve slightly better
results, than the state of the art algorithms: 0.3% increase
in accuracy (here we consider only the methods that use no
additional training data).

Figure 5. Example cropped images from Yale face recognition
dataset (top row) and example patches from Neuronal structures
segmentation dataset (bottom row). The Yale dataset includes
large variations in pose, facial expression, illumination and some-
times includes obstacles (glasses). Patches of neuronal tissue
sometimes clearly indicate membranes (the last two images), but
in many cases the images display very unclear and blurred struc-
tures that are hard to detect even for a trained human expert.

Figure 6. An example implementation of a transformation that
changes illumination. The original image is per-pixel divided by a
blurred version of itself. This makes some originally dark regions
a little lighter.

In structure segmentation benchmark, we exactly match
the performance of the current state of the art algorithm,
which is Convolutional Neural Networks [5], but obtain the
results orders of magnitudes faster.

4.1. Face recognition

Original Yale face recognition dataset contains 165
grayscale images of 15 individuals (and therefore has K =
15 classes). There are 11 images per subject, one per dif-
ferent facial expression (normal, happy, sad, sleepy, sur-
prised, and wink) or configuration (left-light, center-light,
right-light, with/without glasses).

We follow the most commonly adopted experimental
setup [3, 9, 25] and average the results over 50 random splits
into training and test sets. Splits are performed indepen-
dently for all images of a particular person. For training
we select five images per person, and use the other six for
testing. We also use the cropped version of the dataset [3]
since most publications with competing methods follow this
protocol.

We run both TICT and TICJ with the set ® of transfor-
mations that includes small shifts (up to two pixels in each
side) and illumination changes. We implement illumination
changes simply through dividing the original image by the
very blurred one (see figure 6 for example). For blurring we
use Gaussian kernels with width 8 and 16. Other parameters



are selected as described in section 3.4.

As baselines we select two state of the art methods that
achieve the best results for this experimental setup: spatially
smooth subspace learning [3] and orthogonal rank one ten-
sor projections [9]. The results are presented in table be-
low. The table also includes neural networks on pretrained
features [25] that performs better than the proposed TICJ.
However, this method uses additional data for the feature
learning process, and therefore a comparison is question-
able. Apart from this method, TICJ achieves better results
than state of the art methods using no additional data. TICT
overfits the data and performs significantly worse.

Method Error (%)

Cai et al. [3] 18.3

Cai et al. [3] (updated) 14.7
Hua et al. [9] 13.2
Shan et al. [25] 8.2
TICT (ours) 184
TICJ (® = @) (ours) 16
TICJ (ours) 12.9

4.2. Neuronal structure segmentation

The neuronal membrane segmentation dataset was used
for ISBI 2012 challenge [1]. It consists of 30 training and
30 test images of neuronal tissue captured with serial sec-
tion transmission electron microscopy. The task is to per-
form pixel segmentation into two classes: cell membranes
and inner parts of the neuron. Because the classes are im-
balanced, the accuracy is measured in F-score: a commonly
used metric that combines precision and recall.

From the neurological experts we know, that membrane
appearance does not depend on the orientation of the mem-
brane, and therefore we can safely include 360° rotations in
the set of transformations ®. We sample rotations every 15
degrees, resulting in 24 transformations considered.

We perform training on 50000 pixel patches X selected
at random from the training images together with the labels
of the corresponding pixel y. We select the patch size to be
31 x 31 pixels (w = 31).

As baselines, we select the methods that won the first and
the second place in the challenge [1]. The first method is an
ensemble of convolutional neural networks (CNN) [5]. The
second method is a random forest per-pixel classifier with a
huge number of features and cross-image priors (RF) [13].
We also include recently proposed convolutional decision
trees (CDT) [12] as they outperform RF.

Method 1-F-score (%) | Training time
RF [13] 7.9 unknown
CDT [12] 6.8 8 hours (CPU)
CNN [5] 6.0 7 days (GPU)
TICT (ours) 6.7 2.5 hours (CPU)
TICJ (ours) 6.0 3 hours (CPU)

The results of the experiment are presented in table
above: TICJ matches the state of the art results of Convolu-
tional Neural Networks and consistently outperforms other
methods. It is also very important to notice the highly sig-
nificant speedup during training, where the training time is
orders of magnitude smaller for TICJ then for CNN. CNN
are reported to train for about one week on a GPU cluster,
and the estimated time is one year on a single CPU. TICJ, on
the contrary, can be trained in one CPU within three hours.

5. Conclusions

Invariance to different types of transformations is re-
quired in many domains of Machine Learning and Com-
puter Vision. The prior knowledge about nuisance transfor-
mations that are reflected in visual data sets can be incorpo-
rated into a learning process to achieve better accuracy and
higher generalization capacity.

In this paper we propose a novel image classification
algorithm called Transformation-Invariant Convolutional
Jungles (TICJ). The method is based on transformation-
invariant features, inspired by a pooling operation similar
to HMAX, but parametrized with a global convolutional
kernel. To assure that these features are transformation-
invariant, we take the maximum response value over the
transformations considered (see lemma 1).

We learn the parameters of these features by solving a
convex optimization problem, that incorporates the term en-
forcing the separation of the dataset, and the term penaliz-
ing the complexity of the learned kernel. These features are
then used as predicates to form the TICJ algorithm.

Regularization is enforced in TICJ through
transformation-invariance constraints, gradient regu-
larization and through the limitation on the maximum
width of the final TICJ. These design constraints render
the learned features interpretable and ensure satisfactory
generalization even for small datasets.

We test the proposed approach on two very different
datasets: (i) Yale face recognition dataset, that is very small
(15 classes, 5 images per class for training), and (ii) Neu-
ronal structures segmentation dataset (contains tens of thou-
sands of samples for each of two classes). In both datasets
we achieve state of the art results. On the Yale dataset we
outperform the competitors by at least 0.3%, if we consider
the algorithms that do not use additional training data (the
only algorithm with superior performance uses features pre-
trained on another dataset). For the Neuronal membrane
segmentation dataset we achieve the same F-score as Con-
volutional Neural Networks approach, but we train TICJ
within 3 hours in a single CPU, comparing to about one
week CNN training on a GPU cluster. The paper demon-
strates that incorporating transformation-invariances in the
feature learning process can significantly boost the perfor-
mance while being computationally very efficient.
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