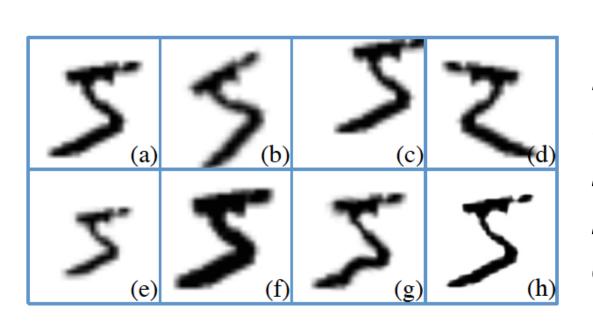
ETHZÜRICH DINFK

TI-pooling: transformation-invariant pooling for feature learning in CNNs

1. Transformation invariance

Transformation invariances everywhere:

- Natural images: illumination, camera view-point, projections.
- Domain-specific, such as medical imaging: rotation, shift-2. invariances, scale, non-linear stretching, microscopy artefacts.
- 3. Computer-vision algorithms need to be robust to these variations, if the final result does not depend on them.



Human can easily recognize images under many different transformations: rotations, shifts, mirroring, scale, morphological operations, non-linear distortions, color change.

Related approaches:

- Predefined transformation-invariant features (SIFT, RIFT):
 - Allows for simple transformations, but not for arbitrarily-defined ones.
 - Can be used with very simple algorithms, but not with complex ones, such as deep learning.
- 2. Learning transformation-invariant features (TICJ):
 - Works with arbitrary transformations, but only
- with simple algorithms (decision trees / jungles). Spatial Transformer Networks: 3.
 - transformations, learning Good for incorporating the known ones.
 - Introduces additional layer of complexity.
- 4. Multiple instance learning (multi-column networks):
 - The algorithm as a whole is transformationinvariant, but individual features are not.
- 5. Augmentation:
 - State of the art.
 - Relying on the flexibility of the network to learn a solution for every transformation.
 - Requires more flexible models.

TI-pooling:

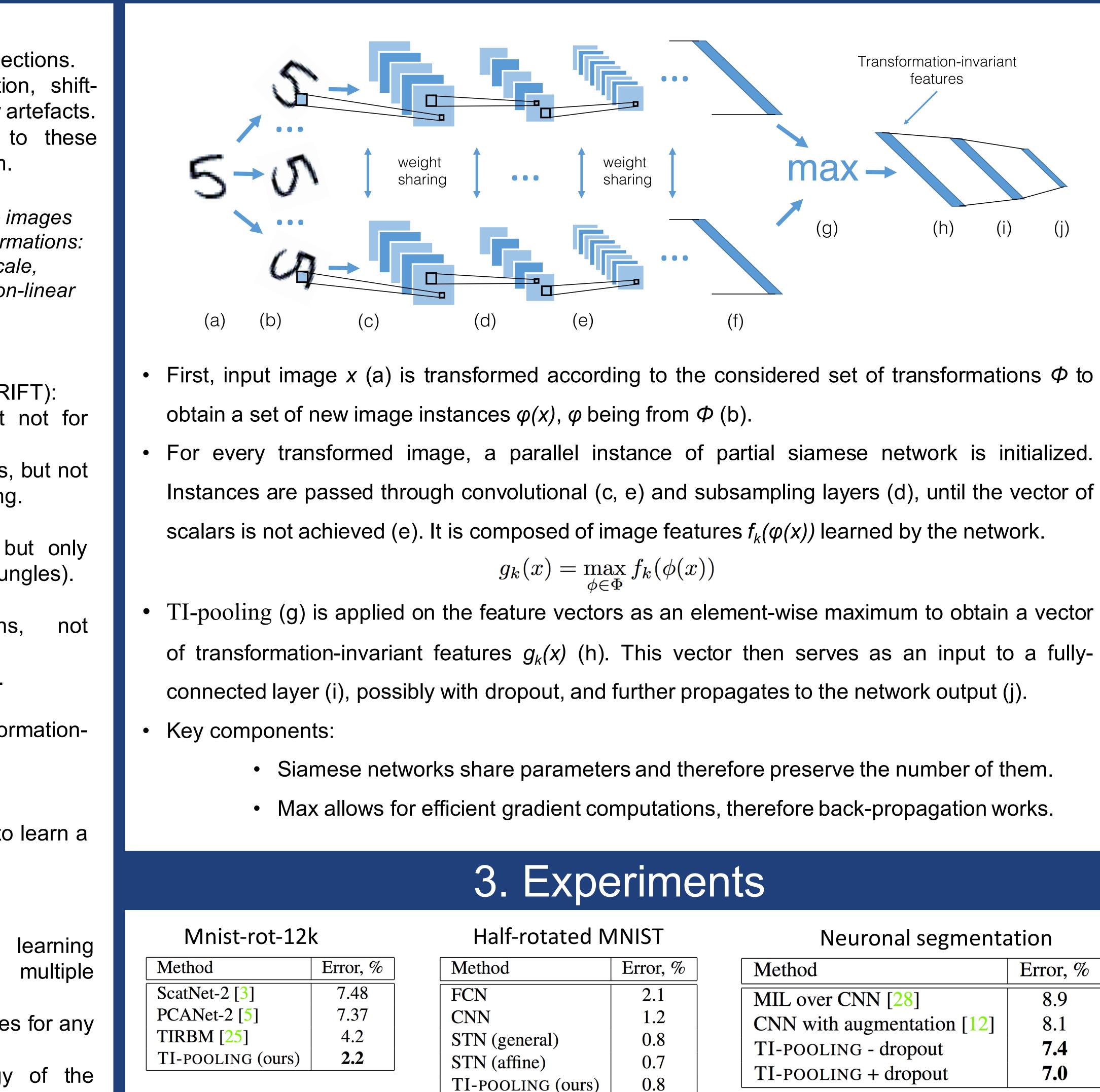
- Based on the combination of ideas from transformation-invariant features (2) and from multiple instance learning (4).
- Guaranteed to learn transformation-invariant features for any arbitrary set of expert-defined transformations.
- Allows to simplify the complexity and topology of the network, converges faster and more robust.

* The authors assert equal contribution and joint first authorship.

IEEE/CVF 2016 Conference on Computer Vision and Pattern Recognition, 26 June – 01 July 2016

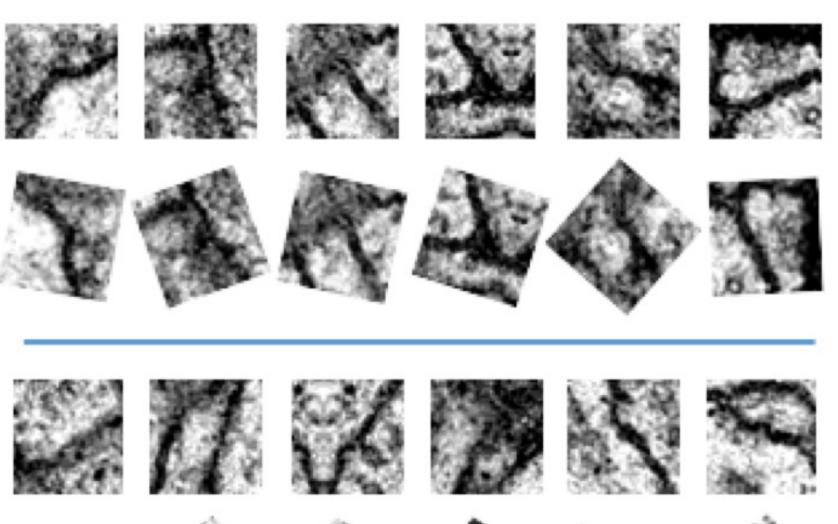
Dmitry Laptev*, Nikolay Savinov*, Joachim M. Buhmann, Marc Pollefeys Department of Computer Science, ETH Zurich, Switzerland

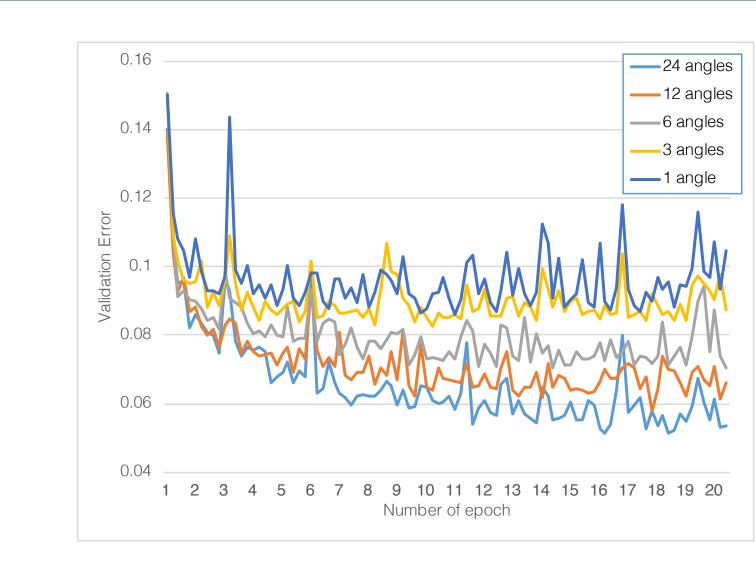
2. Proposed topology



See the paper for the detailed analysis and interpretation of the above results.

Neuronal segmentation	
Method	Error, %
MIL over CNN [28]	8.9
CNN with augmentation [12]	8.1
TI-POOLING - dropout	7.4
TI-POOLING + dropout	7.0
	Method MIL over CNN [28] CNN with augmentation [12] TI-POOLING - dropout



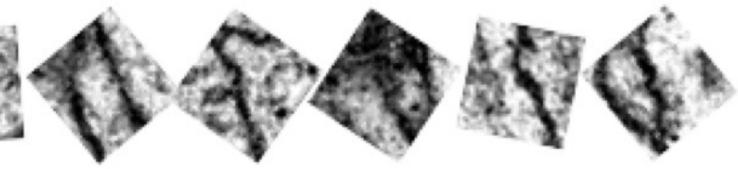


Lemma 1. The feature of the image x defined above is transformation-invariant if the set Φ of all possible transformations forms a group (axioms of closure, associativity, invertibility and identity).

Codes soon available at https://github.com/dlaptev

CVPR 2016

4. Properties



 Input patches from neuronal segmentation dataset (rows 1 and 3) together with the patches rotated by the maximum angle for some features $g_k(x)$. • In most cases the membranes are oriented in approximately the same direction. The algorithm considers this orientation to be **canonical**.

The more angles we sample for a set Φ – the better results are achieved (time=accuracy trade-off). Fewer canonical positions needs to be handled by the learning algorithm, unlike augmentation.

