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1. Transformation invariance 2. Proposed topology 4. Properties
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* First, input image x (a) is transformed according to the considered set of transformations @ to . -
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 Can be used with very simple algorithms, but not . L .
with complex ones, such as deep learning. Instances are passed through convolutional (¢, e) and subsampling layers (d), until the vector of approximately the same direction. The algorithm

2. Learning transformation-invariant features (TICJ): considers this orientation to be canonical.
 Works with arbitrary transformations, but only

scalars is not achieved (e). It is composed of image features 7, (¢(x)) learned by the network.
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3. Spatial Transformer Networks: . . . . . . 6 ange
. . * TI-pooling (g) is applied on the feature vectors as an element-wise maximum to obtain a vector 3 angles
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*+ State of the art. » Max allows for efficient gradient computations, therefore back-propagation works. R

* Relying on the flexibility of the network to learn a
solution for every transformation.

 Requires more flexible models.

Validation E

 The more angles we sample for a set @ — the better
results are achieved (time=accuracy trade-off).

3. Expenments  Fewer canonical positions needs to be handled by

Tl-pooling: the learning algorithm, unlike augmentation.
1. Based on the combination of ideas from learning Mnist-rot-12k Halt-rotated MNIST Neuronal segmentation
transformation-invariant features (2) and from multiple Method Error, % Method Error, % Method Error, % . .
- - ScatNet-2 [ ] 7 48 FCN 51 Lemma 1. The feature of the image x defined above
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3. Allows to simplify the complexity and topology of the TL-POOLING (ours) | 0.8 TI-POOLING + dropout 7.0 associativity, invertibility and identity).

network, converges faster and more robust.

See the paper for the detailed analysis and interpretation of the above results. Codes soon avalilable at https://github.com/dlaptev
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