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Abstract

The field of computer vision experienced a significant breakthrough in
image categorization and semantic segmentation during recent years.
In some natural image recognition tasks, especially in supervised
learning setting, modern algorithms, for example deep convolutional
neural networks, achieve results comparable to human performance.
This progress is due to very powerful models trained on large enough
data sets.

While in general this progress is very beneficial for the concep-
tual development of computer vision, it showed rather limited impact
on highly specialized tasks, especially when they arise from a very
narrow domain, or with very few (if any at all) training samples. In
this thesis we consider computer vision tasks with such limitations,
focusing mostly on medical imaging problems.

The key to advance in these tasks is to develop expert-aware algo-
rithms, i.e. to incorporate strong prior knowledge from field experts
into modern algorithmic pipelines.

In case of supervised learning, our approaches result in signifi-
cant accuracy gains and performance improvements when compared
to conventional models. In case of unsupervised or weakly supervised
learning, we introduce a framework that requires no training and leads
to reasonable non-subjective solutions based only on expert priors. In
regard to applications, we focus on medical imaging, video data and
natural image analysis.

Overall in this thesis we focus on three types of expert-aware al-



gorithms. These algorithms are based on: (i) weakly specified expert
approach to the problem, e.g. how additional data can be used to
resolve ambiguities, (ii) variety of facts about the input data itself,
e.g. known invariances in the data, and (iii) facts about the desired
properties of a solution, e.g. detected objects statistics.

The first type of algorithms mimic the style of experts when they
solve a problem at hand. As a main example we show how to adapt
segmentation and restoration algorithms to deal with both spatial and
temporal "anisotropy" — a characteristic property of image data that
is very common in the domain of medical imaging and in video data.
Similar to experts resolving ambiguities from related samples, we re-
solve the correspondences between different data points and reinforce
the patterns learned across samples.

The second set of approaches presented in this thesis allows one
to develop computer vision detection algorithms using no training
data at all, just based on some properties of the output defined by
experts. In medical domain problems these properties can be for-
mulated from known biological facts about the imaged objects. We
present a framework that enables the user to employ these biologically
motivated priors for tuning internal parameters of an algorithm, and,
thereby, deriving a non-subjective final solution. This thesis demon-
strates the power of this approach by applying it to a challenging task
of large-scale senile plaques segmentation.

The third type of algorithms addresses a more powerful feature
learning process by incorporating invariance of the imaged objects
to a specific set of expert-formulated transformations. We demon-
strate this approach by applying it to both a very efficient greedy
algorithm and to highly flexible deep learning architectures. We do
not only experimentally demonstrate that this approach works supe-
rior when applied to a narrow-domain application, but also show that
even general computer vision problems can benefit from incorporating
common-sense knowledge about nuisance variations in the world.



Zusammenfassung

Die Forschung im Bereich maschinelles Sehen hat in den vergangenen
Jahren bedeutende Durchbriiche bei der Kategorisierung und seman-
tischen Segmentierung von Bildern feiern kénnen. Moderne Algorith-
men wie tiefe neuronale Konvolutionsnetzwerke erreichen in manchen,
insbesonders iiberwachten, Bilderkennungsaufgaben ein Leistungsniveau,
das menschlichen Fahigkeiten in nichts nachsteht. Dieser Fortschritt
beruht vor allem auf komplexen Modellen, die auf geniigend grossen
Datensétzen trainiert werden.

Obwohl sich dieser Fortschritt fiir die konzeptuelle Weiterentwick-
lung der Bilderkennung als sehr hilfreich erwies, beeinflusst er das
Leistungsniveau bei hochst spezialisierten Aufgaben eher wenig. Ins-
besondere bei Aufgaben in Nischenbereichen mit sehr wenigen (bis
keinen) Trainingsbeispielen erweisen sich die tiefen neuronalen Netze
als weit weniger effektiv als bei den Standardanwendungen. In dieser
Dissertation 16sen wir Probleme des maschinellen Sehens mit solchen
Einschrankungen, wobei die entwickelten Methoden schwerpunktmas-
sig auf Bildern aus dem medizinischen Bereich getestet werden.

Um solche Aufgaben zu 16sen, miissen effiziente Algorithmen en-
twickelt und diese mit Expertenwissen ausgestattet werden, das heisst
moderne Algorithmen mit dem a-priori Wissen von Experten eines
Bereichs zu erweitern.

Im Fall des iiberwachten Lernens fithrt unser Ansatz zu einer
signifikanten Steigerung der Genauigkeit und Leistung im Vergleich
zu konventionellen Modellen. Fiir nicht iiberwachtes bzw. wenig
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iiberwachtes Lernen stellen wir ein System vor, das ohne Training
zufriedenstellende, nicht subjektive Ergebnisse liefert, die nur auf a-
priori Wissen von Experten beruhen. Im Bezug auf Anwendungen
konzentrieren wir uns auf medizinische Bilder, Videos und andere

Bilder.

Insgesamt werden in dieser Arbeit drei Arten von Experten-gesteuerten
Algorithmen behandelt. Diese Algorithmen basieren auf: (i) schwach
spezifizierte Expertenlosungen fiir ein Problem, d.h. wie zusétzliche
Daten Unklarheiten beseitigen kénnen; (ii) verschiedenen Fakten tiber
die Daten selbst, z.b. bekannte Symmetrien geschétzt werden kénnen;

(iii) Fakten beziiglich der gewiinschten Eigenschaften einer Losung,
z.b. statistische Eigenschaften von den zu erkennenden Objekten.

Der erste Typ von Algorithmen ahmt die Herangehensweise von
Experten nach, wenn diese ein konkretes Problem l6sen. Als Haupt-
beispiel zeigen wir, wie man Segmentierungs- und Restaurationsalgo-
rithmen anpassen kann, um mit ortlicher und zeitlicher Anisotropie
umgzugehen, welche eine charakteristische Eigenschaft von medizinis-
chen Bilddaten und Videodaten ist. So wie Experten Unklarheiten
beseitigen, indem sie &hnliche Beispiel betrachten, benutzen wir die
Korrespondenz zwischen verschiedenen Datenpunkten um verstarkt
Beispiel-iibergreifende Muster zu lernen.

Die zweite Klasse von Methoden, die in dieser Arbeit prasen-
tiert werden, erlauben Objekterkennung ganz ohne Trainingsdaten
zu entwickeln, nur basierend auf Losungseigenschaften, die von Ex-
perten gegeben sind. Im medizinischen Bereich konnen diese Eigen-
schaften von bekannten biologischen Fakten der abgebildeten Objekte
abgeleitet werden. Wir stellen ein System vor, das den Benutzer be-
fahigt, solch biologisches a-priori Wissen zum Einstellen von internen
Parametern eines Algorithmus zu verwenden, sodass eine nicht sub-
jektive Losung erreicht werden kann. Diese Arbeit demonstriert die
Wirksamkeit dieser Methode anhand der herausfordernden Aufgabe
im Hochdurchsatzverfahren Plaques zu segmentieren.

Die dritte Art von Algorithmen behandelt das verbesserte Lernen
von Merkmalen, indem Symmetrien der abgebildeten Objekte mitein-



bezogen werden, die durch eine spezifische Menge von Experten-definierten
Transformationen gegeben sind. Wir demonstrieren diese Methode
einerseits an einem sehr effizienten Greedy-Verfahren und andererseits

an den hochst flexiblen Architekturen von tiefen neuronalen Netzw-
erken. Wir zeigen experimentell, dass diese Herangehensweise nicht

nur in Nischenbereichen iiberlegen funktioniert, sondern auch, dass
man allgemeine Kenntnisse iiber Stérungen und Variationen der Welt,

wie wir sie wahrnehmen, gewinnbringend fiir die Losung von Proble-
men des maschinellen Sehens nutzen kann.
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Chapter 1

Introduction

In this thesis we address the limitations of current computer vision
pipelines by developing ezxpert-aware algorithms. The proposed al-
gorithms benefit a range of computer vision problems, especially in
highly-specialized fields, such as medical imaging. The current chap-
ter introduces open challenges in modern computer vision and outlines
how these challenges can be solved by leveraging expert knowledge.

1.1 Background and motivation

1.1.1 Modern supervised computer vision

Computer vision is currently experiencing one of the fastest devel-
opments in its history. The community develops novel methods and
models, as well as enhances those already known for a very long time
(in large part Convolutional Neural Networks | ). These algo-
rithms are now successfully applied to solve problems that seemed
almost impossible to solve just years ago.

Challenges such as "ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)" | | demonstrated the power of modern
computer vision methods when it comes to detection, classification
and localization of objects in natural images. Other famous exam-
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ples of supervised problems that experienced great progress recently

include classification of the morphologies of distant galaxies [gal], real-
time human pose recognition | | and segmentation of neuronal
structures | |.

Three of the most important drivers for these breakthroughs in
modern supervised computer vision are the following.

e Abundance of training data. Variations in the appearance
of real world objects are usually quite large. They arise from
both intrinsic variation of objects (different breeds of dogs can
look very different, but they still belong to the same object
class) and imaging variations (scale, lighting, pose, occlusion
and viewpoint). All these variations need to be presented to an
algorithm in the training process in order to be captured and
accounted for. That is the main reason why the large size of the
data sets used for training turned out to be crucial for the de-
velopment of automated techniques. Within the last five years,
natural imaging data sets grew up orders of magnitude in terms
of number of training images (5717 images in PASCAL VOC
2012 challenge | | versus 456567 images in ILSVRC
2014 | D).

e Effective training methods. Both computer vision and opti-
mization techniques evolved significantly during the last decade.
Large data sets enabled us to train complex and flexible mod-
els with only small risk of overfitting. New data representa-
tion methods, new imaging techniques, as well as advanced
machine learning models are being constantly developed and
improved. Different regularization and optimization methods
increase stability and convergence rates of algorithms, speeding
up the training process and allowing parallelizable implementa-
tions. It is impossible to give a comprehensive overview of all
the developments, but we discuss some of the approaches in the
later chapters of this thesis in great details.

e High performance computations on desktop comput-
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ers. Steady growth of available computational power allows
researchers in computer vision to process larger and larger vol-
umes of data, and to train more and more complex models.
One of the most important milestones being the spread of GPU
(Graphics processing unit) computations, as opposed to CPU
(Central Processing Unit) computations. Performing vector op-
erations on GPU allows one to employ highly efficient parallel
computations without the need for a supercomputer implemen-
tations. This development ultimately enables training of models
with millions of parameters on data sets consisting of hundreds
of thousands of images.

Arguably, a lot of supervised problems in computer vision can be
solved when training flexible enough model for long enough time on a
large enough representative data set. This black box approach proved
its efficiency, but only for a very limited range of problems.

1.1.2 Open challenges

Unlike all the examples described above, many problems in super-
vised and weakly supervised computer vision still can not by design
be solved with this "black box" approach. Here we identify three
types of problems, that we will also focus on in this thesis, where
complementary or completely different approaches are required.

e Limited number of samples. Many domains share the prop-
erty of the data sets being extremely hard to collect. Limit-
ing the number of training samples prevents one from blindly
training complex models as they will result in overfitting. The
medical domain is one of the most important examples: collect-
ing data can require very expensive and long procedures, such
as invasive tissue sampling, or growing an experimental subject
animal.

e Unrepresentative data sets. In some cases the data just
does not contain enough information to solve the problem. If
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image resolution is small, it could be impossible to distinguish
small objects even for a trained human. Similarly, recognizing
the object can be hard if only a part of the object is present
in the image. Without some additional structural information
this problem cannot be solved.

e Limited number of labels. Supervised learning requires a
data set to have accurate labels. While in some cases the la-
belling process might be simple and inexpensive, in many fields
image annotation requires highly-specialized knowledge and has
to be performed by experts, whose time is usually very limited
and therefore, valuable. For example, most natural image data
sets are labelled with the use of crowdsourcing, but annotating
most of the medical data sets cannot be outsourced, and has to
be performed by a specialist in the field.

1.2 Towards expert-aware algorithms

1.2.1 Types of expert prior knowledge

Each of the issues described above, data scarcity, atypical samples
or lack of labels, poses a challenge to the community to develop new
approaches, that would incorporate all the available information in
an intelligent way, rather than just feeding it to powerful general-
purpose algorithms. The nature of this knowledge can be different,
and can enforce different types of constraints on the algorithms being
developed. The people who possess this specialized knowledge are
most likely trained domain professionals.

In this thesis we focus on how to obtain maximum relevant infor-
mation, and how to use it to improve computer vision pipelines across
various problems, mostly focusing on medical imaging applications,
video data and natural image recognition.

In most cases human experts cannot formalize and describe in
detail the precise reasoning or algorithmic procedure which they follow
when solving a problem, otherwise automating the solution would be
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a simple matter of implementation. However, experts do provide prior
knowledge in different ways, the most common being a combination
of the following three.

e Input data properties. Experts can usually formulate some
properties of the data that are specific to the objects captured
or to the imaging process. If some of these properties do not
correspond to the usual assumptions on the data sets such as
those discussed in section 1.1.1, then one can incorporate this
knowledge and maybe benefit from it.

¢ Recognition process. Sometimes just observing how an ex-
pert solves the problem at hand can provide a lot of useful
insights into the structure of the data and the labels. In most
cases pattern recognition pipelines operate locally, "looking" at
only a patch of the image at a time. This approach is by itself
inspired by models of the human visual system. But the most
interesting insights come from how experts resolve ambiguities
when local appearance is insufficient. They start to employ
complex dependencies in the data, that usually come from deep
understanding of the underlying data generation processes.

e Solution properties. Finally, experts familiar with the field
can usually formulate either expected or desired properties of
solutions. Even some very broad knowledge on global statistics
of the solutions can be very beneficial, especially when the num-
ber of labels is small or the labels are unavailable altogether.

In this thesis we focus on all three types of prior knowledge and
show multiple examples of how to formulate expert-aware computer
vision pipelines employing these priors.

1.2.2 Objectives and contributions

The underlying hypothesis of the thesis is that incorporating domain-
specific knowledge into modern computer vision algorithmic pipelines
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can result in significant accuracy gains and performance improve-
ments when compared to conventional models.

To support the claims of this hypothesis, we pursue the following
three main objectives in different chapters of the thesis.

1. Creating expert-mimicking methods to resolve ambiguities in
the data. These human-inspired techniques incorporate the
knowledge about the global structure of the data into the pipeline
operating on local patches. This step from local to global ap-
pearance can simultaneously result in better accuracy of the fi-
nal solution to the supervised problem (such as segmentation),
as well as in better data representations (in case of image re-
construction or enhancement).

2. Developing weakly supervised algorithms using little to no train-
ing data, but some prior knowledge from experts. This strategy
includes information about the common solution stages and the
desired properties and statistics of the final result. In many
cases these statistics can be considered proven in the field, and
therefore non-subjective. By incorporating proven biologically
motivated priors, we permit a non-subjective pipeline that can
be applied to large-scale problems.

3. Improving the feature learning process by incorporating all the
knowledge on nuisance variations in the input data. We show
how to improve stability, convergence rates and accuracy of ex-
isting algorithms by enforcing invariance to specific types of
expert-formulated transformations of the input data.

The pursuit of these objectives results in the development of mul-
tiple novel algorithms, which are grouped into three branches men-
tioned above. These algorithms are evaluated and their properties are
extensively studied on different problems and data sets.
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Figure 1.1: Major applications of the methods developed in the thesis.
(a) Neuronal structures segmentation (one electron microscopy slice
and its binary segmentation). (b) Low frame-rate video enhancement
(two consecutive blurred frames before enhancement). (c) Weakly su-
pervised amyloid plaques detection (one microscopy slice and a cloud
of detected plaques in green in 3d). (d) Various standard narrow-
domain problems (face recognition, horse silhouette segmentation,
hand-written digit recognition).

1.3 Areas of application

We demonstrate the properties of the developed methods on multiple
problems and benchmarks (see figure 1.1).

e Connectomics. The field of connectomics, described in de-
tail in chapter 2, serves as a major application throughout the
thesis. Advancing this branch of neuroinformatics is expected
to resolve a great number of questions about the functions and
mechanisms of different brain structures. The problem of re-
constructing neuronal geometry is substantially different from
standard natural image recognition. The microscopy data has
many unique properties, such as anisotropy and transformation-
invariance, and employing these properties is crucial to the de-
velopment of automated reconstruction techniques.

7
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e Video data. Videos can be interpreted as a sequence of de-
pendent images. When working with some specific types of
data sets, such as full-exposure low frame-rate videos, employ-
ing these dependencies can largely assist in the problems of video
enhancement.

e Amyloid plaques segmentation. Detecting and segmenting
plaques in mice brains and building statistics of their distri-
bution is considerde to be a key step to evaluate new types
of drugs against Alzheimer’s disease and assist researchers in
further drug development. For this problem we build a com-
pletely expert-driven, yet non-subjective processing pipeline for
neuroimaging. It uses biologically motivated priors on multiple
stages to minimize human interactions and it does not requires
any labeled data.

e Narrow-domain object recognition. We also consider mul-
tiple small computer vision classification and segmentation tasks
that cover a narrow domain of objects: face classification, horse
silhouette segmentation and hand-written digit recognition. These
general problems also benefit from some of the expert-formulated
priors, such as transformation-invariance.

While these are the main examples that we use throughout the
thesis, the range of applications that could benefit from the presented
ideas is significantly broader and includes basically any pattern recog-
nition problem that can be manually solved by a trained expert.

1.4 Structure of the thesis

The thesis is divided into five chapters, the first of which is this in-
troduction.

In chapter 2 we discuss how computer vision and image process-
ing algorithms can benefit from expert priors in case of "anisotropy"
— a common property of structured sequential data, e.g. in electron
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microscopy and video. We introduce two novel methods in this chap-
ter: anisotropic ssTEM image segmentation algorithm using dense
correspondence across different sections, and SUPERSLICING frame
restoration algorithm for anisotropic ssTEM and video data.

Chapter 3 presents a novel technique for amyloid plaque detection
from volumetric images at a whole-brain scale with up to a single-cell
resolution. This method defines a weakly supervised algorithm that
employs biologically motivated priors on the statistics of the solution.
These priors are used to tune internal parameters of an algorithm,
resulting in a non-subjective and tuning-free pipeline.

Chapter 4 starts with the introduction of Convolutional Decision
Trees — novel fast and greedy segmentation and classification method.
On top of it we develop Transformation-Invariant Convolutional Jun-
gles — an algorithm that incorporates the information on nuisance
variations of the data (such as rotation- or scale-invariance). We then
generalize the approach to more powerful deep learning models, re-
sulting in TI-POOLING — a transformation-invariant pooling operator
for feature learning in Convolutional Neural Networks.

Finally, chapter 5 summarizes the contributions, introduces direc-
tions for future developments, and concludes the thesis.
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Chapter 2

Anisotropic data

Medical experts often use additional information to resolve ambigu-
ities in the data. For example, by exploring the similarities between
structures in different images, they gain the information required to
solve the recognition problem at hand. In this chapter we show how
to leverage cross-image dependencies in case of anisotropic data by
solving the correspondence problem. Employing these dependencies
results in the development of two novel algorithms for anisotropic
data segmentation and restoration.

2.1 Introduction

Many problems and examples in textbooks on statistics and machine
learning start with one common assumption: "data being distributed
identically and independently". While data points are collected in-
dependently in many tasks and data sets, there exists a whole class
of real-world problems, where this assumption is often not satisfied.
For example, neuronal activity in different brain regions is not inde-
pendent: one neuron activation influences the activation of another.
Such data is called "structured" as it implies some structural depen-
dencies between data points. Two of the most common examples of
structured data are time series and images: the value of a time-series
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signal at one point in time usually depends on its value in the previ-
ous points in time, as well as color and intensity of one pixel in the
image depends on the appearance of the neighboring pixels.

Exploiting these dependencies resulted in development of new ma-
chine learning and computer vision methods: Structured Support Vec-
tor Machines | | for general Structured Prediction | ],
virtual Markov Models for time series | |, min-cut/max-flow al-
gorithms | | for Markov Random Fields | |, Convolutional
Neural Networks | | for feature extraction in computer vision and
time series problems.

In computer vision, these methods allow us to exploit dependen-
cies between the appearance of neighboring pixels: through pairwise
potentials in min-cut/max-flow segmentation or through the convo-
lution or pooling operators in Convolutional Neural Networks. Incor-
porating this prior information on a local level leads to significant im-
provements of the results on a global level. Some modern approaches
go beyond cross-pixel dependencies, and include also cross-image de-
pendencies. For example, one can assume with confidence that labels
of similarly-looking superpixels | | from different images are con-
nected and therefore dependent | |.

2.1.1 Anisotropic data definition

In this chapter we show how to employ cross-image dependencies in
case of anisotropic data sets. Anisotropic data set is a collection
of sequential images (a stack) representing a continuous evolution of
structures, in which the resolution across one dimension of the stack is
much lower than the resolution of the other two dimensions. Through-
out the chapter we consider two major examples of anisotropic data
sets: serial section transmission electron microscopy and full-exposure
low frame rate videos.

Serial section transmission electron microscopy (ssTEM) | |
is the only available imaging technique that guarantees sufficient res-
olution for reconstructing neuronal structures on the synapse level:
below 5 square nanometers per pixel. Thereby, ssTEM imaging sup-
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P e

Tissue dissected out After washing, the tissue is Tissue is now placed in Specimen
and placed in fiing dehydrated by placing it dilute solution of plastic vial
solution. in higher and higher concentrations embedding medium.

of acetone or alcohol. ﬁ

Specimen

| ‘== .

When the plastic is hard, the
block is trimmed and is
ready for sectioning.

Specimen
holder for
microtome

Tissue is placed in final
embedding mixture angd the
plastic is polymerized
in an oven.

Sections are cut on an ultramicrotome:
with 2 glass or diamond knife.
The sections are floated off the edge of
the knife onto the surface of a water trough.

' >

The sections are picked off the * After the sections dry, they
surface with a copper grid. are ready for staining with
heavy metal solutions and viewing

in the electron microscope.

Figure 2.1: Speciment preparation process for ssTEM imaging. Image
credit and detailed process description [KF11].

ports the scientific goals of connectomics [Seul2]| to understand brain
functions. Unfortunately, this technique requires physically cutting
brain tissue into thin sections and then imaging individual sections
with transmission electron microscopy (figure 2.1). The resolution
across the vertical dimension of a stack (limited by the precision of
serial cutting) is significantly lower than across the dimensions of a
section (limited by the precision of the electron microscopy imaging).

The same phenomenon can be found in a low frame rate full-
exposure video recording. Video is called full-exposure if its exposure
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Figure 2.2: Examples of anisotropic data: two ssTEM sections of dif-
ferent tissues (left) and two low frame-rate video frames captured with
full exposure (right). Arrows point out the details that are averaged
away because of anisotopicity of the data.

time equals to the time between two frames. In case of anisotropic
video, the resolution of each frame (spatial resolution) is higher than
the temporal resolution of the video.

In both examples, the anisotropy of the imaging process causes
the individual sections or frames to be blurred. In case of ssTEM,
the intensity of a pixel is the cumulative energy that represents the
average tissue density along the vertical dimension of the section.
Because of this projection, the details of a scene that are smaller than
the thickness of the section are averaged away (figure 2.2). Similarly,
changes in the video scene that occur faster than the frame exposure
time fall below temporal resolution of the camera and appear to be
blurred.
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An expert-aware approach to process anisotropic data is to con-
sider not a single image at a time, but to join the information from
multiple consecutive images. Exploiting the similarities between struc-
tures in different sections/frames, a human expert gains the informa-
tion required to solve the recognition problem that is too ambiguous
to be solved from a single image. In the following sections we show
how to formalize this approach and how to incorporate it into the
segmentation (section 2.2) and reconstruction (section 2.3) pipelines.

2.1.2 Anisotropic data and connectomics

ssTEM data is a major example of anisotropic data that we consider
in this thesis. This imaging techniques support multiple biological
goals that lie in the field of neuronal geometry extraction. In this
section we show why these goals are important and what motivates
the development of expert-aware algorithms in this field.

Human brains approximately consist of 70 billions neurons, and
each neuron is connected with thousands of different neurons — that
all form the so-called Connectome — the most difficult and unstudied
structure in our body, a comprehensive map of connections within an
organism’s nervous system and its brain. Connectomics | | is the
production and study of connectomes — a field where neuroanatomists
face the challenging task of reconstructing neuronal structure with
synaptic resolution in order to gain insights into the functional con-
nectivity of brain.

Reconstructing the whole brain structure of an animal with all
the connections is a very long-term challenge with many intermediate
steps. One day neuroscientists will be able to decode the information
in the connectome and understand the questions such as: how memory
works, how we learn, how to cure mental illnesses, and much-much
more. But already today there are challenging biological questions
that can be answered if neuronal structures are to be reconstructed
even within small region of the brain.

e Neuroscientists know tens of different neuron types within the
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retina (light-sensitive layer of an eye). For some of them the
functional role is known and for others the role is still to be
discovered. One of the challenges is to see what types of neurons
are present in different brain parts and to understand, which of
them are likely to have specific functional roles.

e Combining the patterns of neural spikes with a realistic connec-
tivity within the region of interest would constitute a large step
to understanding how the information is passed through and
processed in neuronal tissue. Even more, exploring one specific
region of the brain and looking at structural differences for dif-
ferent individuals, one could track how information is encoded

in the brains for some specific skill (| | is an example of
active research on bird singing patterns encoded in the neuronal
connectivity).

e For some mental disorders like schizophrenia and autism, it has
been difficult to identify a clear neuropathology in the brain
on larger scales. Automatic detection of miss-wirings on the
resolution of a single neuron may help us point out the cause of
these mental disorders.

Performing connectome reconstruction requires the imaging tech-
nique with the resolution good enough to capture the structures smaller
than 10 nanometers. Electron microscopy (EM) has revealed novel
facts about synapses and other subcellular structures in the mam-

malian nervous system | |. Serial EM has been most famously
used to reconstruct the connectivity of the Caenorhabditis elegans ner-
vous system | , | — a small creature with only about

300 neurons. More recent improvements in this technique have led to
imaging of much larger volumes of brain tissue, and exciting insights
into invertebrate nervous systems | , , |, and
mammalian neural circuits | , |.

In a recent study, about one thousand neurons were reconstructed
from a mouse retina using 20 thousand hours of human labor | |.
Despite of this great effort, the reconstructed retinal volume was just
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0.1 mm on each side, only large enough to encompass the smallest
types of retinal neurons. This study employed semiautomated meth-
ods, using advances in machine learning to automate most of the
reconstruction | |. Without the automation, the reconstruction
would have required 10-100 times more human effort.

All these recent studies demonstrate that performing this geom-
etry extraction manually is a tedious and error prone process that
requires an impractical amount of time. They point to an impor-
tant need for the development of new computational technology to
aid the analysis of EM imagery of brain tissue. Therefore, accurate
algorithms for automatic neuronal segmentation are indispensable for
large scale geometric reconstruction of densely interconnected neu-
ronal tissue.

To support the goals of connectomics, we investigate two impor-
tant problems of ssTEM data analysis and propose novel computer
vision algorithms to solve them.

e The segmentation problem that aims to annotate neuronal struc-
tures in tissue as either membranes or the inside volume of neu-
rons. This segmentation enables tracking the boundaries of in-
dividual neurons — the task crucial for both geometry extraction
and connectivity estimation.

e The reconstruction problem that aims to increase the depth res-
olution and de-blur the individual sections, compensating for
the artifacts of anisotropic imaging techniques. This process-
ing step is essential to simplify any further analysis and to get
insights into the structures even below the imaging resolution.

For both problems we explore the expert approach to handle the
dependencies in anisotropic data. In order to resolve the ambiguities
of one blurred section, a human expert estimates the correspondences
between the structures across multiple images, and joins the informa-
tion from neighboring sections to better represent the appearance of
this structure.

17



CHAPTER 2. ANISOTROPIC DATA

In the following sections we show a way of formalizing this corre-
spondence estimation using registration techniques | |, and how
to incorporate the joint information through either relying on ma-
chine learning algorithm to achieve that (in case of segmentation), or
through the joint optimization problem (in case of reconstruction).

2.1.3 Related work
Segmentation

There are three general approaches for anisotropic data segmentation.
The first approach focuses on the detection of neuron membranes
in each section independently | |. For example, the software
package Fiji [F1]] implements this approach: first, in every pixel the
vector of features is evaluated, and then this vectors are used to train
Random Forest classifier. We use this package for feature extraction,
described in detail in section 2.2.1.

The second approach incorporates context from different sections
without correspondence alignment. In | | the authors propose
two terms for graph cut segmentation, one of them incorporates con-
text from neighboring sections. In contrast to our algorithm, this
term depends only on the feature vector evaluated in the pixel in a
direct z-neighborhood, with no correspondence alignment. Since the
difference between the sections is usually large, incorporating of this
term does not produce significant improvements.

The third approach | | generates many, possibly contra-
dictory, segmentation hypotheses in individual sections and combines
them in order to optimize the global agreement functional that is
defined on the whole stack. In contrast to this approach, we are not
dealing with given segmentation hypotheses, but incorporate the con-
text from neighboring sections to improve the segmentation of every
single section.

Our two novel contributions in the area of anisotropic data seg-
mentation are both based on the same idea motivated by how experts
resolve ambiguities in the data. This idea is to exploit context from
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neighboring sections by solving the correspondence problem.

First approach that we present in section 2.2 concatenates the
information about local appearance of the structure from multiple
slices. This resolves ambiguities if some detail is blurred in one slice,
but sharp on another.

Second approach described in section 2.3 introduces reconstruc-
tion as a preprocessing step for the segmentation. This reconstruction
recovers enhanced sub-frames and solves the problem of persistent
blurry membranes. As the sub-frames contain finer details, the seg-
mentation algorithm is able to identify the neuronal structures with
higher accuracy than methods without preprocessing.

Reconstruction

The first group of related techniques for frame enhancement interpo-
lates between two neighboring frames. The simplest approach is a
linear frame interpolation, which, although simple and fast, produces
blurry results even when the initial frames are sharp. A more ad-
vanced technique | | is based on optical flow estimation and
frame warping.

However this method would not be able to reconstruct sharp de-
tails from initially blurred images, as it often happens in anisotropic
data. In contrast, the approach proposed in section 2.3 reconstructs
the changes within the frame, therefore recovering crisp details in each
sub-frame. It becomes possible by taking into account the information
on how the imaging is performed and by incorporating the continuity
priors on the imaged structures evolution.

Another approach | | to solving the problem of spatial
enhancement relies on imaging data from multiple angles, resulting
in multiple electron microscopy stacks. Combining multiple repre-
sentations of the same tissue volume can produce good results, but
requires a stack to be imaged multiple times, which is impossible for
some specimen in case of sSTEM, because the tissue is usually phys-
ically destroyed after the first imaging. Unlike this method, we are
considering a more general case and use only one sequence of frames
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from one ssTEM stack.

The third type of approaches | | is based on exploring
the recurrence of small self-similar patches in space and time, which
proved to be very beneficial in case of natural images. However, these
methods assume that similar patches appear repeatedly within the
frame sequence which is almost never the case for neuronal struc-
tures. In contrast to these methods we do not rely on high recurrence
of self-similar patches and therefore, solve a more general problem.

The proposed approach instead tries to reconstruct the virtual
slices from which the imaged slice is composed. This is possible to
some extend by incorporating the information on the imaging process
itself, and leveraging the information on continuity of the structures
across multiple slices.

2.2 Segmentation using dense correspondence

In this section we present an approach for the automatic membrane
segmentation in anisotropic stacks. The key challenge is to segment
the structures that appear blurred, because these structures can be
easily confused with others from the local appearance. This section
describes how to use the context from the neighboring sections to
resolve these appearance ambiguities.

The problem of membrane segmentation is briefly presented in
figures 2.3. Given histological slices of neuronal tissue, the task is to
annotate the pixels as either depicting the inner area of the neuron,
or the membranes — the tissue surrounding the neuron and isolat-
ing one neuron from another. The membranes are usually of higher
density, and therefore appear darker than most other structures, but
this appearance of neuronal structures is not always the case. The
hardest regions for automated methods to segment are mitochondria,
synaptic vesicles, and just blurred membranes.

As one can see, local appearance around the pixel in a section
may be insufficient to discriminate between the membrane or the in-
ner area of a neuron. This ambiguity is caused by the projection
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Figure 2.3: The task of membrane segmentation (ISBI 2012 challenge
data set [ACTB" 15, cha]). The data set consists of a sequence of
anisotropic sections captured with electron microscopy together with
the corresponding binary labels. Each image is a projection of the
whole thickness of the physically cut section. Arrows point out some
of the regions that are more difficult to segment than others: mito-
chondria boundaries marked with blue, synaptic vesicles — with green,
and blurred membranes with orange.
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mechanism of transmission electron microscopy which projects whole
three-dimensional section onto the image plane. The projection causes
some of the membranes to appear very blurred as shown in figure 2.3
when they are not orthogonal to a cutting plane. Using larger context
from the surrounding area in the same section can resolve some ambi-
guities | ; |, but such a reasoning is often not sufficient.

When experts try to label ambiguous pixels, they inspect the
neighboring sections to see whether a global correspondence between
structures in the sections can be established. They then use the ap-
pearance of corresponding structures from neighboring sections to re-
solve these ambiguities. This task appears to be straightforward for
a human even though the images are quite different from one another
due to anisotropy.

To enable automatic methods to exploit information from neigh-
boring sections we have to resolve the correspondence problem — find-
ing a mapping from a neighboring section to the current one. We
propose to solve this problem by finding global dense correspondence
with SIFT flow algorithm | | and to use the features from dif-
ferent sections to perform segmentation.

2.2.1 Method description

Let 7 = {Ik, Yk}f:1 be a training set, consisting of K images with
a given labeling. Here I* = {93]; é\le represents an input image of
section k, 3:’; corresponds to a pixel in section k. Y* = {y’; IJ;/:l
represents the labels of the corresponding pixels p for a section k.
The label y}’; = 1 denotes the class membrane and y]’; = 0 background
or other non-membrane structures. Let (p(l";) be a feature vector for
the pixel CEI; . We pursue the goal to build a segmentation algorithm
that would automatically label new sets of images.

The proposed method constructs a dense correspondence between
the neighboring sections and it uses features that are evaluated in all
the corresponding pixels for classification. Our workflow is illustrated
in figure 2.4. For a given section I* we first find warping from the
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Figure 2.4: Based on the non-linear correspondings Fj_;; and
Fj+1k, the algorithm evaluates the warped images Fj,_1 (1 k=1) and
Fiy1,(I*1) (a). Then, feature vectors in the corresponding pix-
cls are evaluated: (&), o(ah), (k) (b). After that the method
concatenates them and passes the concatenated feature vector to a
Random Forest classifier (¢). The classifier estimates a probability
map that is further segmented by Graph Cut algorithm (d).

neighboring sections I¥+1 and 11 Fiy1, and Fi_q ). Then, for
every pixel :Jc’; we find the corresponding pixels i"; and :E’;. Next, we
calculate features in all three pixels go(:f:];), go(:c];), go(:i;];), concatenate
the feature vectors and use this extended feature vector as input to a
Random Forest (RF) classifier. Finally, the RF returnes probabilities

of features that enters the Graph Cut segmentation.
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Framework

Suppose a non-linear warping Fj_1 is given and it establishes the
correspondence between the pixels in the image I*7! and I*. How
such a correspondence can be obtained will be described in section
2.2.1. We introduce two more images to the data set: I = I' and
IE+1 = JK both for training and test sets, so that now there are
two neighbors for every section from 1 to K. Every pixel :L"; is then
assigned to the corresponding pixels in the neighboring sections:

&y = Fiop(zy), @y = Fipn(ag). (2.1)

To incorporate the context from neighboring sections, an extended
feature vector has to capture the contextual feature information as-
sociated with the pixel x’; itself, as well as with the pixels :%’; and a'clrf.
The extended feature vectors form a training set for a Random Forest
classifier | ].

T= {[so(x’;); p(@k); @)y, 1<p< N 1<k < K} . (22)

A trained Random Forest returns the probability of every pixel of
the image to belong to a membrane, i.e., a probability map. After-
wards, graph cut segmentation | | with the probability map as
unary potentials partitions the image into semantically meaningful
segments.

Dense correspondence.

To find a dense correspondence between the sections we use the re-
cently proposed method “SIFT flow” | |. SIFT flow finds the
non-linear warping Fj 2 on the pixel grid :1:}7 between the images I'
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Figure 2.5: An example of non-linear warping between images I' and
I? found by SIFT flow algorithm. Image F} o(I') shows the warping
applied to image I' and image Fy 2(Grid) visualizes the warping by
applying it to a grid image.

25



CHAPTER 2. ANISOTROPIC DATA

and I? by minimizing the following energy:

E(F12) Zmln{” —s(FLg(x;,))H,t}%-

ZWD(OC}” Fia(x)))+ (2.3)
p=1

) min{O‘D(Fm( b)s Fia(zy)), d}.

(p,q)€e

E(F) 2) is comprised of a data term, a small displacement term and
a smoothness term. The first term constrains the SIFT descriptors
s(:vg) [ | evaluated in pixel mp to be matched along with the
descriptors evaluated in pixel Fi o(x ) The small displacement term
minimizes the differences between the original image and a wrapped
one. D is equal to the distance between the two pixels in a pixel
grid. The smoothness term favors a transformation of adjacent pixels
to be similar. In this objective function, truncated L; norms are
used in both the data term and the smoothness term to account for
matching outliers and discontinuities, with ¢ and d as the threshold,
respectively. As most of the neuronal structures are continuous, the
use of L1 norm is not essential in our case, which we discuss in section
2.3.1. Figure 2.5 shows the results of applying SIFT flow algorithm
to two consecutive images from ISBI 2012 segmentation data set. For
further information we refer to | |.

Features

The whole set of features provided by toolbox [Iij] is used in this
study: Gaussian blur, Sobel filter, Hessian, Difference of gaussians,
Membrane projections, Variance, Mean, Minimum, Maximum, Me-
dian, Anisotropic diffusion, Bilateral, Lipschitz, Kuwahara, Gabor,
Laplacian, Structure, Derivatives.

Additionally, we incorporate all the components of SIF'T histogram
| | in the pixel and some newly developed features that proved
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to be informative for neuronal reconstruction: radon-like features
[ |, ray features | | and line filter transform | |.

Overall 626 features are being calculated in each pixel. When
we incorporate the features from the neighboring sections into an
extended feature vector, this number increases to 1878. RF performs
well even in presence of lots of noisy features | |, therefore we
need no feature selection procedure.

Graph cut segmentation

The probability of a pixel belonging to a membrane is evaluated by
RF independently for every pixel in the image. We use graph cut
segmentation to take into account the fact that neighboring pixels
are more likely to have the same label. For simplicity we drop the
upper index in the following equations, as our graph cut algorithm
processes one section at a time: y, = y’;.

To determine the labels Y = {yp}N we combine the approaches

p=1
described in | | and in | |]. The segmentation task is for-
mulated as an energy minimization problem Y = argminy E(Y),
where
N
E(Y)= Z Eu(yp) + As Z Es(Yp, yg)+
p=1 (pa)€e
N (2.4)
Agf Z Eqg(yp) + Age Z Ege(Yp: yq)-
p=1 (p.q)€e

Here the first term specifies a unary potential that equals to the
negative log probabilities given by the RF in every pixel. Let i(z,) be
an intensity of the image in pixel x,. Then the second term models
a smoothness constraint that penalizes discontinuities in the segmen-
tation of neighbored pixels with similar intensities:

(i(xp) — i(wq))2> 9 (Yp: Ya) (2.5)

202 D(xp’qu

Es(yp,yq) = exp (—
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where 6(yp,yq) is a Kronecker function that equals 0 if y, = y, and 1
otherwise.

The gradient flux term | | is defined as follows:

_f max{0,F(z,)} ify,=1
Eqgp(yp) = { — min{0, F(pa:p)} if yz =0,

where F'(x,) denotes a gradient flux,

F(zp) = Z < Ugy s Ve, >,

xq:(xp,Tq)EE

Uz, z, Tepresents a unit vector pointing from pixel z, to the neigh-
boring pixel z, and vector v;, corresponds to the gradient vector at
pixel ).

The good-continuation term | | is defined as follows:

(i(wp) — Zm)Q) 60— (Yp; Yq)
202, D(zp,zq)’
(2.7)
The variable ,, encodes the average gray value of membrane pixels
and oy is estimated as the variance of these gray values. The factor
0 (Yp,yq) =1 for y, =1, y, = 0 and equals 0 for all other cases.

Egc(y]”y‘I) = | < vxz:»?uxqu > |eXp <_

The minimum of E(Y) is computed by min-cut/max-flow com-
putation | |. The cross-validation procedure determines the un-
known parameters Ag, Ayr, Age such that the results generalize in an
optimal way.

As a post-processing procedure two steps are performed itera-
tively: region removing and line filter transform | |. Region re-
moving is performed by a series of thresholding operations based on
region properties such as Area, Solidity, Euler Number and Eccen-
tricity. The line filter transform makes segmentation results smoother
and fills the gaps between membrane segments.
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2.2.2 Experiments
Data

The experiments are performed with the data provided for the ISBI
2012 challenge “Segmentation of neuronal structures in EM stacks”
[ , |, example of training images are shown in figure 2.3.
The data set | | is comprised of a training and a test set. Each
set consists of 30 sections from a ssTEM of the Drosophila first instar
larva ventral nerve cord (VNC), imaged at a resolution of 4 x 4 x 50
nm/pixel and cover a 2 x 2 x 1.5 micron cube of neural tissue. Training
and test sets are selected from different volumes of the same VNC.

Error metrics

Two metrics are used for the task of membrane segmentation: Pizel
error and Splits and Mergers Warping error. Given the estimated
labeling Y and ground truth Y*, the pixel error is defined as the
Hamming distance between the two labelings > 4§ (Y, Yy).

Splits and Mergers Warping error is a segmentation metric that
penalizes topological disagreements between the two labelings | |.
The warping error is the squared Euclidean distance between Y* and
the “best warping” L of Y onto Y* such that the warping L is from the

A~

class A that preserve topological structure: minpen »_, 6(L(Y)y, Y).

Both types of errors are evaluated automatically on the test set
when the results are submitted to the testing server. The challenge
also has determined the errors caused by discrepancy in human label-

ing.

Results

Our experiments are conducted with the default parameters of the
SIFT flow algorithm: v = 0.05, t = 0.1, @ = 2, d = 40. We compare
the results of three different versions of our algorithm: with no context
from neighboring sections (one slice), with direct correspondence (we
incorporate the context from the pixels being a direct z-neighbors,
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f)

Figure 2.6: Original images: (a, d), results using only one slice: (b, e),
results using dense correspondence across three slices: (c, ). Arrows
point out some corrections of neuronal morphology.

Method H Pixel error ‘ Warping error ‘
Human 6.7 % 102 3.4x1077
Dense ETH 7.9 % 1072 6.2 1074
Direct ETH 8.0 % 1072 6.5% 1074
One slice ETH || 8.5% 1072 6.4% 1074
IDSIA 6.0 % 1072 4.3%107%
CSIRO 8.7 % 1072 6.8 %1074
Utah 1.3 1071 1.6 %102
NIST 1.5% 1071 1.6 x 1072

Table 2.1: Comparison of error results on a testing set for different
versions of the algorithm and the results of other teams. Human
denotes the error of human annotators.
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with no warping procedure), and with dense correspondence found
by SIFT flow algorithm.

Results are presented in table 2.1. Some examples of the resulting
images are presented in figure 2.6. Incorporating the context from the
neighboring sections with direct correspondence leads to improvement
in terms of pixel error, but it performs worse in terms of warping error.
On the other hand, using dense correspondence leads to improvement
in both objectives: 3.6% improvement in warping error and 6.4% for
pixel error.

Most of other algorithms applied in the ISBI challenge exploited
the context of only one single slice | |. The NIST team
[ | and the CSIRO team | | employed Support Vector Machine
(SVM) as a classifier. A team from Scientific Computing and Imag-
ing Institute, University of Utah | | designed series of Classi-
fiers and Watershed Trees. The Swiss AI Lab IDSIA team | ]
trained Deep Neural Networks which appeared to be competitive to
ours and their solution was slightly better in quantitative terms. The
last approach, however, requires almost a week of training time with
specialized hardware, and it is therefore much more difficult to apply
in real-world scenarios.

2.3 SUPERSLICING frame restoration

The key issue of anisotropic data is that some of the details can be
averaged during the imaging process. The averaging blurs the images
and introduces ambiguities in the data. The information from dif-
ferent slices can improve the segmentation quality by resolving some
of the uncertainties, as we demonstrated in the previous section 2.2.
But if some detail is ambiguous in multiple slices, combining features
can be not enough.

This section presents a reconstruction algorithm that resolves some
of the averaged details, giving insight into what is happening inside a
ssTEM slice beyond anisotropic resolution or within a blurred frame
beyond temporal resolution. We demonstrate the reconstruction al-
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gorithm to recover even the details that appear blurred throughout
the data.

Digital imaging defines a quantization of the visual appearance
of the world. The intensity of a pixel is the cumulative energy that
has reached the physical sensor. In consequence, details of a scene
that are smaller than the spatial resolution of the sensor are averaged
away (see figure 2.7). Visually, averaging overcomes the problem of
aliasing, but causes spatial blur in anisotropic setting.

An anisotropic frame can be modelled as an average of wirtual
isotropic sub-frames (see figure 2.7). In this part of the thesis we
focus on reconstructing isotropic sub-frames from anisotropic data to
support subsequent image processing tasks like image annotation.

For example, one can model an ssTEM image of a thick section as
an average projection of a set of thin sections. Reconstructing these
thin sections most often results in improved insights into structure
changes below the depth resolution and lead to better geometry ex-
traction. Or in case of low frame rate video, one can interpret the cap-
tured frame as an average of virtual sub-frames captured with shorter
exposure time. The goal is then is to increase temporal resolution:
estimate a high frame rate video from low frame rate.

We propose a method called SUPERSLICING (Super resolution
frame Slicing). It reconstructs isotropic virtual sub-frames from a
sequence of anisotropic frames, thereby increasing the depth or tem-
poral resolution. This reconstruction states an inherently ill-posed
problem as there exists an infinite number of possible sub-frames that
can produce the same observed frame. We propose a regularisation
that uses the information from the neighboring frames to resolve these
ambiguities. The problem is formulated as energy minimization which
appears to be convex and therefore guarantees the global optimum.
The objective function is guided by two principal considerations: i)
the physical constraints of the imaging process; ii) the structures in
sub-frames should follow the correspondence between structures in
the neighboring frames. To formalize the latter SUPERSLICING uses
optical flow | | to find the correspondences between neighboring
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Figure 2.7: A schematic illustration of our approach: (a) neuronal
structure in brain tissue sample; (b) the tissue sample is cut and
captured with ssTEM, producing anisotropic frames with blur; (c)
the proposed method SUPERSLICING reconstructs wirtual sub-frames
with sharp details.

frames and interpolates them into sub-frames.

Reconstruction is an important goal by itself, but we also demon-
strate how SUPERSLICING enables a novel automated method to per-
form neuronal structure segmentation (section 2.3.2). It recovers the
crisp image of these structures and facilitates recognition of neural
structures. The experiments on the Drosophila VNC data set (de-
scribed in section 2.2.2) demonstrate significant improvement over
the baselines.

2.3.1 Reconstruction method description

Let Y™ be the observed sequence of frames, n € [1,..., N], y; — pixel
p of the frame Y™, i(y;) — the intensity of pixel y;. Let €(x}) be a set
of neighbors of pixel zj. We want to reconstruct L virtual sub-frames
xnl e [1,..., L] of the observed frames Y.
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Optimization task

We define optimization problem 2.9 to approximate virtual sub-frames
as an energy minimization problem for given correspondences 2. The
energy 2.9 consists of three terms.

The first term, the data term, represents the relaxed physical con-
straints that the observed frame should be equal to the average of the
virtual sub-frames:

i) = %Zi(azz’f’l),v%’; ey, (2.8)
=1

The second term promotes smoothness by favoring an alignment of
pixel’s intensities in the sub-frames along the structure’s progression
between the frames. The algorithm proceeds by finding correspon-
dences between the anisotropic frames using optical flow and then in-
terpolates them into the sub-frames using bilinear interpolation (see
section 2.3.1).

The third term encourages the resulting sub-frames to be smooth
to avoid visual artifacts. This goal is achieved by minimizing the
difference of intensities between the neighboring pixels.

The sum of these three terms forms the final energy function:

. 1 2
B X0 = 3 (i) = i)
yey” =1
2
D (Z w(z, i i) = > w@,fgw%)%
(i'l’r;’l’jgylgkl)eg mee(ig’l) zee(i’(r;,l+l)
2
1Y (iph i)
I;lvl;mg’ZEe(:pg’l)
1=1,...,.L

(2.9)

Here X\ and ~ are Lagrange parameters that control the degree of
regularization versus data fidelity. E(X™!,..., X™F) is a quadratic
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functional with respect to i(:vg’l) and therefore we can efficiently cal-
culate the global optimum with any convex optimization technique
(we used interior point method | | in our experiments).

Corresponding pixels

How can we find the set € of corresponding pixels? A central idea
is to utilize the context of neighboring frames for reconstructing sub-
frames. We first find the correspondences between the pixels in neigh-
boring frames, same as in section 2.2. We then interpolate these
correspondences through sub-frames. The major difference with the
dense correspondences described in previous section 2.2 is that in-
stead of SIFT flow | | algorithm we employ optical flow algo-
rithm | |. While being faster than SIFT flow, it provides good
enough priors for the optimization problem.

Assume that we observe the sequence of three images: Y, Y? =
Y, Y3. For every pixel y% of Y2 we find the corresponding pixel y]’,f
from image Y*, k € {1,3} by finding the set QO = {(yg,yg)wyf, €
Y2} minimizing optical flow energy:

En(Qy) =) (i(yp)—i(yf))era > ol yg)®  (210)

Yp€Y yp€Y2

Here o is a model parameter, p(yp,y,) is Euclidean distance be-
tween the pixels y, and y, in pixel grid. Optical flow results in good
correspondences, even though it considers only integer displacements,
because the membrane displacements are smooth and need to be es-
timated only up to the thickness of a membrane, which is on average
3 to 7 pixels.

As soon as we have corresponding sets Q%, and Qg’,, we can draw a
curve ¢ through y]}, to yg and 53 for every two correspondings (y;, yg)
and (yg, y?). Then we interpolate the pixels curve ¢ crosses in virtual

sub-slices: 5330(1), e 7‘%5@) (see figure 2.8). Then

Qp = {(@Lg 2 I e [, L= 1]}
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Figure 2.8: An illustration of correspondence interpolation. Top: ar-
rows show correspondences between original frames. Bottom: arrows
shows interpolated correspondences between sub-frames. The second
term of the energy function encourages the corresponding pixels to
have low difference in intensities.
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The final set €2 is a union of all sets €2,.

We then write the second set of constraints enforcing that corre-
sponding pixels of sub-frames have the same intensity:
i@ = i@pth), vt ety e q, (2.11)
where (2 is a set of all pairs of corresponding pixels.

If pixel :%Z’l does not fit to the pixel grid, we employ the bi-
linear interpolation technique and rewrite it as a weighted sum of

. . . )l ~n,l
direct neighbors in a grid #," = Zmee(iﬂg,z)w(:c,x; )z, w(.) > 0,
ZIEEWLJ) w(:v,jcg’l) = 1. Here w(x1,x2) is a bilinear weight that is
P

closer to 1 if the distance between x1 and x5 is small and closer to
0 otherwise. We then rewrite the second set of constraints in the
following manner:

> waphite) = Y w(x, i), (2.12)

acEe(i:;L’l) acEe(aA:g’Hl)

2.3.2 SUPERSLICING for neuronal segmentation

In this section we show how segmentation pipeline discussed in section
2.2 can benefit from the use of the proposed reconstruction technique.

We propose a method that first reconstructs virtual sub-frames
and uses features that are evaluated in pixels of recovered sub-frames
for classification. Our workflow is illustrated in figure 2.9. For a
given section Y™ we first recover sub-frames X™! ... X™! with Su-
PERSLICING. Then, similar to the ideas from section 2.2, for every
pixel $z’l, l € [1,...,L] we calculate features cp(xg’l), concatenate
the feature vectors and use this extended feature vector as input to a
Random Forest classifier | |. A huge simplification of the pipeline
comes from the fact that ones virtual sub-frames are reconstructed,
only direct correspondence needs to be used.

We select the method parameters v and A\ as well as optical flow
parameter o with cross validation. We use Random Forest with 255
trees and perform training on 10% of all the pixels. As features we use

37



CHAPTER 2. ANISOTROPIC DATA

X21 X22 X2,3
7 7

[o(x*1), @(x,%2), @(x,%3)]

3 (d)

Figure 2.9: An illustration of the SUPERSLICING pipeline for neuronal
structures segmentation. Based on the non-linear correspondings be-
tween neighboring frames Y, Y2 and Y3 (a) the algorithm evaluates
virtual sub-frames X!, X22 X?23 (b). Then, feature vectors in
sub-frame pixels are evaluated: (z)'), .. .,Lp(:l:Z’L) (c). After that
the method concatenates them and passes the concatenated feature
vector to a RF classifier (d) that returns the final segmentation (e).
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Figure 2.10: Two fragments of neuronal tissue captured with ssTEM:
original sections (left) and one of sub-frames (right). Arrows point out
membranes that were blurred out in the original images and appear
more visible after sub-frame decomposition.

per pixel SIFT histograms [Low99| and line filter transforms [SB07]
with different parameters.

2.3.3 Experiments

To evaluate SUPERSLICING approach we perform experiments on sev-
eral different tasks and data sets. For all of the following experiments
we select the method parameters v and A as well as optical flow pa-
rameter « with 5-fold cross validation and with respect to the corre-
sponding metric.

ssTEM imaging and Neuronal Reconstruction

The first set of experiments is performed on an anisotropic electron
microscopy stack, imaging neuronal structures. The data set is de-
scribed in details in the previous section 2.2.2. Figures 2.10 and 2.11
qualitatively shows the results of our algorithm for virtual frame re-
covery. Membranes recovered in the sub-frames using SUPERSLICING
are much sharper than the ones produced by the baseline methods.
To quantitatively test the approach for neuronal membrane seg-
mentation presented in section 2.3.2, we compare segmentation results
with two more methods: RF segmentation based on only features eval-
uated in one layer [[XIF'B10a], and RF segmentation based on context
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]

Figure 2.11: A qualitative comparison of our method with the base-
lines. Column (a) shows original anisotropic sections. Three following
column shows L = 3 interpolated frames estimated with: linear in-
terpolation (b), optical flow warping (c), SUPERSLICING (d). Arrows
point out blurred membranes that are better visible after sub-frame
reconstruction.
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’ Method H Warping error ‘
One-section segmentation | | 2.88 % 1073
Three consecutive sections (chapter 2) 2.69 %1073
SUPERSLICING segmentation 2.38 %1073

Table 2.2: Warping error on a testing set for one-section segmenta-
tion, segmentation based on three consecutive sections and for SUPER-
SLICING. The proposed method outperforms the baseline one-section
method by 17% and the method proposed in section 2.2 by 11%.

from neighboring sections (see chapter 2 for detailed description). For
fair comparison we implement the same set of features for all three
methods and use the same RF structure with no post-processing to
measure the impact of SUPERSLICING.

In this set of experiments we omit pixel-wise error metric, as it
is less relevant to neurons topology | |, and compare the
results in terms of warping error | |, which is also described in
section 2.2.2. The results are summarized in table 2.2. The results
on sub-frame stack produced by SUPERSLICING are 17% better than
one sections segmentation and 11% better then the previous results
based on three neighboring sections.

Natural videos

Rotating Fan We test the proposed algorithm on a rotating fan
video from | ] to evaluate our method qualitatively '. As the
rotation speed is higher than the shutter speed the frame renders
blurred fan blades. Based on three neighboring frames and no prior
information we estimate L = 3 virtual sub-frames with linear inter-
polation, optical flow interpolation and the proposed method. Figure
2.12 shows the results of comparison. As can be seen linear interpo-

"We do not compare with | | directly, as their method operates under
different assumptions and, moreover, they provide no quantitative results.
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Figure 2.12: A comparison of SUPERSLICING with the results of al-
ternative methods. Column (a) shows original frames Y!, Y2 and
Y3. Each following column shows three interpolated frames estimated
with: linear interpolation (b), optical flow warping (c), SUPERSLIC-
ING (d). Arrows point out that SUPERSLICING results in less blurred
fan blades.

lation blurs sub-frames even more. Optical flow interpolation shows
the rotation of the fan, but as the initial frames are blurred, the
resulting warping is blurred as well. SUPERSLICING shows superior
results: it reconstructs the original shape of the blades and renders
sharp sub-frames.

KTH data set We perform synthetic experiments on the KTH
action database [SL.C04] to quantify the quality of SUPERSLICING re-
construction. This database consists of videos recorded at 24 frames
per second. We first downsample the frame rate to 8 frames per second
while taking an average of three neighboring frames (low frame rate
videos). Then we reconstruct sub-frames with four different methods:
frame repetition, linear interpolation, optical flow warping and SU-
PERSLICING. Figure 2.13 shows qualitative results for the number of
virtual sub-frames equal L = 2 or 3.

Boxplots in figure 2.14 visualises the comparison of peak signal to

42



2.3. SUPERSLICING FRAME RESTORATION

e e
W —

S
S

ly3

y

y2

t
SN . P

a) (b) (c) (d) (e)

y3

-
B
-

=~

Figure 2.13: A comparison of our reconstrction results with the results
of different methods and with ground truth. Top: walking person
video reconstruction with L = 3 virtual sub-frames. Bottom: hand
waving person video reconstruction with L = 2 virtual sub-frames.
Column (a) shows original frames Y, Y2 and Y? from low frame
rate video. Three following column shows L = 3 interpolated frames
estimated with: linear interpolation (b), optical flow warping (c),
SUPERSLICING (d). Column (e) shows ground truth from high frame
rate video. Our results are less blurred and they are qualitatively
closer to the ground truth than the results of the baseline methods.
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Figure 2.14: An illustration of quantitative results on KTH videos
for different methods. Left plot: walking person video with L = 3
virtual sub-frames, right plot: hand waving person video with L = 2
virtual sub-frames. Each boxplot shows statistics for PSNR (in dB)
evaluated for: frame repetition (1), linear interpolation (2), optical
flow warping (3) and our method (4).

noise ratio (PSNR) evaluated on 25 frames of video for L = 3 and
L = 2 respectively. SUPERSLICING outperforms baseline methods for
almost all frames and the average quantitative results appear to be
significantly superior: 23% better for frame repetition and 10% for
both linear interpolation and optical flow warping.

2.4 Contributions

In this chapter we investigate anisotropic data — an important exam-
ple of specialized sequential data with many non-standard properties,
that render standard techniques less applicable. Expert approaches
to resolve ambiguities in this data lead to formulation of two ideas on
how to employ properties of anisotropic data.

e The sequential nature of the data introduces dependencies be-
tween the pixels in neighboring sections/frames. These depen-
dencies represent the evolution of a physical object, and there-
fore continuous, but usually non-rigid. The complexity of these

44



2.4. CONTRIBUTIONS

dependencies prevent isotopic techniques to compensate for the
blurring. However, using dense correspondence between the
consecutive images can introduce additional information crucial
to the solution of the problem at hand.

e Each section of anisotropic data represent an accumulation of
the information across one of the axes (either spatial in case
of ssTEM or temporal in case of video). While this projec-
tion results in a blurred representation of some of the details,
together with the cross-image dependencies, it also defines a
physical model that can be used to formulate priors leading to
a plausible solution to a reconstruction problem.

Exploiting these data properties results in the following contribu-
tions.

e A novel membrane segmentation method using dense
correspondences across sections. If some neuronal struc-
ture is not clearly visible in one section, but visible in another,
then bringing the information from multiple corresponding re-
gions together can introduce the required information to the ma-
chine learning algorithm. The proposed algorithm combines the
information from different sections by robustly solving the corre-
spondence problem with SIFT flow and then using an extended
feature vector for training. The resulting algorithm achieves
second-best quality in the ISBI 2012 challenge, while being very
fast to train. When compared to the baselines, the method is
3.6% more accurate in warping error, and 6.4% in pixel error.

e SUPERSLICING reconstruction and enhancement algo-
rithm. The effect of blur in anisotropic data sets can be mod-
elled as an average of virtual isotopic frames representing an
evolving structure. While in general reconstructing these isotropic
frames is an ill-posed problem, we are able to formulate priors
on evolution continuity and smoothness, and achieve a solution
that is both deblurred. We demonstrate qualitative benefits on
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various anisotropic data sets. Quantitatively, our reconstruc-
tion results are on average 10% better in terms of PSNR than
state of the art.

e SUPERSLICING for membrane segmentation. Combining
the two approaches described above leads to the method that
first reconstructs virtual sub-frames with SUPERSLICING and
then uses them to compose an extended feature vector for fur-
ther segmentation. Such an approach can successfully identify a
neuronal structure, even if it appears blurred in all the images.
This processing step results in a quantitative boost of up to 17%
in terms of warping error when comparing with the baselines.
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Chapter 3

(Global biological priors

Field experts often posses knowledge on how to validate whether the
solution to the problem at hand is reasonable. For example, in case
of object detection problem, experts can often formulate expected
objects properties, such as object size or position. If an algorithm de-
tects objects with very different properties than expected — probably
the algorithm needs to be improved.

In this chapter we discuss how to leverage prior information on
expected properties of the solution to enable algorithm parameter
tuning. The proposed approach permits parameter tuning even in
cases when supervised training is not feasible due to lack of labelled
data.

The major application for the methods and ideas described in this
chapter is amyloid plaque detection in mouse brains. In the following
section 3.1 we describe the relevance of the problem, explore variations
in different data sets and investigate some statistics of interest.

Section 3.2 focuses on one specific data set and presents a novel
computational pipeline, that by design, consists of only simplistic
components and depends only on very few parameters. By limiting
the complexity of the pipeline, we enable fully automatic tuning, i.e.,
all internal parameters of the proposed method are automatically se-
lected. The parameter choice is achieved in such a way so that the
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results correspond to expert-formulated biologically motivated priors.
This leads to a tuning-free pipeline and minimizes subjectivity in cal-
culations.

3.1 Amyloid plaques in cleared mouse brains

3.1.1 Motivation

The research of amyloyd plaques is mostly interesting because of the
connection between the distribution of these plaques in the brain and
the stage of Alzheimer’s disease progression. Alzheimer’s disease is a
chronic neurodegenerative disease that affects tens of millions of peo-
ple worldwide | | and is considered one of the most financially
costly diseases in developed countries | |.

The cause of Alzheimer’s disease is poorly understood. However,
some studies | | claim a connection between the disease pro-
gression and the number of amyloid plaques in the brains of affected
animals. Analysing the distribution of plaques in different brain re-
gions might help to estimate the effectiveness of applied medication.

Automated methods for this problem are expected to serve as an
enabling technology, since it is infeasible for an expert to accurately
count the number of plaques in the whole-brain due to the very large
numbers of them (typical affected brain contains tens of thousands of
plaques). Subsampling, as one of the approaches, is very efficient, but
can lead to non-representative and subjective results, because plaque
distribution is highly non-uniform in different regions of the brain.

Automated large-scale pipelines, on the other hand, can operate
on the whole brain volumes and are at the same time less subjective.
Even when slightly biased, they usually allow accurate relative com-
parison between the results of different treatments and can possibly
accelerate the development of new types of medications.
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3.1.2 Tissue clearing and imaging

Recent advances in tissue preparation and volume processing allow
imaging and single-cell analysis of whole brains | , |.
These techniques enable experts to perform various tasks in volumet-
ric analysis, reaching far beyond plaques distribution estimation.

Compared to slice-by-slice imaging techniques, such as serial sec-
tion electron microscopy, described in chapter 2, tissue clearing with
subsequent optical microscopy imaging enables three-dimensional anal-
ysis of the whole volume in isotropic setting and reduces imaging and
reconstruction artifacts.

The idea of tissue clearing is to change the tissue sample in such
a way that most of the tissue becomes transparent for some wave-
lengths. Preprocessing tissue in such a way makes it possible to cap-
ture the whole volume of the sample and structures of interest with
optical microscopy. But in order to do so, light scattering should be
prevented, which mostly occurs because of the lipids in the tissue.
Therefore, most of the tissue clearing methods proceed by removing
most of the fats while preserving the structure of the relevent objects
in the tissue | |.

One of such methods is called CLARITY | |, and it works
by removing the lipids through the series of chemical treatments. Dur-
ing the extraction process, almost all of the original proteins and
nucleic acids are left in place. To achieve the structure preserva-
tion, CLARITY employs hydrogel monomers, which link to relevant
objects in the tissue, and forms a rigid structure with the relevant
objects preserved in place.

Tissue clearing technique that is used for all the experiments in
this thesis is Focused Electrophoretic Tissue Clearing (FETC) | |.
It works in a similar way as CLARITY, but allows significantly faster
clearing by applying a focused electric field across tissue. It is also
more robust and does not require special training to perform, because
it uses a design of a clearing chamber reproducible with 3D printing
technologies.

For imaging, SPIM microscopy is used | |. This microscopy
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technique highlights one virtual section of the tissue with light sheet
illumination, and images this section with an objective lens, that is
orthogonal to a light sheet plane. Moving the illumination plane
through the tissue sample allows to capture the whole 3D volume
with very high resolution achievable with optical microscopy.

If the clearing process is successful, and the tissue is transpar-
ent enough, then the captured volume would perfectly represent the
images of highlighted sections. However, real-live process is never per-
fect, so blurring can occur due to light scattering as the illuminated
plane goes further from the objective lens. It is a minor problem when
the captured volume is very small, as discussed in the next section,
but becomes a serious issue when the whole-organ analysis needs to
be performed, which we consider in section 3.2.

3.1.3 Local analysis

The first data set that we consider is very small in terms of volume
captured and the number of plaques. Small volume implies that the
imaging quality is approximately the same across the data set, and
also that local statistics correspond to global ones: there is no dis-
crepancy between different brain regions, between tissue densities and
structure distributions.

These properties make a data set quite easy to analyse for even a
non-expert human, and allow one to formulate a simple sequence of
steps to solve the problem of plaques detection (see figure 3.1).

All the required information formulated by an expert include the
following points:

1. high-intensity regions correspond to plagues, background is in
general of lower, but non-zero intensity;

2. background intensity is mostly Gaussian noise for this data set;

3. plaques are uniformly-distributed and compact, i.e. mostly ball-
like structures.
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Figure 3.1: A simple algorithm to analyse plaque distribution over a
small volume of brain tissue captured with 20x magnification. Be-
cause the volume captured is very small, global statistics can be used
for the algorithm and the results can be easily verified by a human ex-
pert. (a) 3D visualization of the volume. (b) Background-foreground
separation with global threshold. (c¢) Smoothing out plaque regions
for further watershed segmentation. (d) The final result of the algo-
rithm (pink dots highlighting plaques).
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This description naturally transforms into the following algorithm 1
(see visualization in figure 3.1). First, we remove background voxels
to separate foreground from background. Then we smooth the shape
of plaques using density estimation with Gaussian kernel | | (ie.
get rid of local maximums of intensity within one plaque regions).
And finally, perform watershed segmentation | | of the density
to get plaques as compact segmented regions.

Algorithm 1 Local plaque detection
Require: volume V € RPXNXM “threshold €, kernel bandwidth h,

Vijk :=0,Y (i,4,k) : Vijr <0, > remove background voxels

S := KDE(V, h), > kernel density estimation

M :={p:Sijr> Spqr,V(p,q,7) € €(i,j,k)}, > local maximums

R := Watershed(S, M) > watershed segmentation
return R

The algorithm 1 has only two parameters: 6 and h. The first one
is estimated given the information about background voxel intensity
distribution. We robustly fit Gaussian distribution to the voxel inten-
sities, and select a threshold 6 as a 99% percentile of this estimated
Gaussian distribution (see figure 3.2). The value of 99% is also some-
how manual, yet it proves to nicely work for different data sets, unlike
selecting a fixed intensity threshold.

The second parameter h is tuned manually. This manual tuning
pursues the idea to determine a final plaque size in line with the
expected values. We investigate how this process can be automated
to perform competitively on a highly challenging data set in the next
section.
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Figure 3.2: Voxel intensity distribution histogram (blue) and the es-
timated background noise density distribution (green). The value of
0 (orange) is selected as a percentile of this distribution.

3.2 Biologically motivated priors for tuning-
free algorithms

3.2.1 Whole-brain analysis

In this section we elaborate on the problem of whole-brain plaque
analysis. Unlike previously discussed local estimation, the key obsta-
cles are the following:

e global thresholds cannot be used, because the tissue properties
differ significantly from one region to another, as well as because
of imaging artifacts (see figure 3.3);

e whole-brain analysis needs to be computationally-efficient to be
performed on regular hardware in a laboratory environment;

e manual parameter tuning is less feasible, because lower-resolution
images provide less tractable information that can vary within
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Figure 3.3: Four non-consecutive sections of the whole-brain volume.
The data set poses a challenge of analysing the regions with vary-
ing properties. Small white dots represent plaques. Non-continuous
transitions within one section represent either corrupted tissue, or the
artifacts of stitching: because the volume cannot be imaged at once,

different sub-volumes (up to 16 in this case) need to be aligned and
stitched together after the imaging is done.
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the imaged volume;

e furthermore, intensive human involvement can introduce sub-
jectivity into the analysis and make the result incomparable
between two experts.

In this section we propose a method that produces analysis of
cleared brain volumes with minimum human intervention. Tuning-
free fashion of the method limits possible bias or subjectivity in the
analysis. The method is computationally efficient and works for a
whole-brain scale at up to a single-cell resolution on a standard laptop.

First, we separate the plaques from background using adaptive lo-
cal thresholding. Then the algorithm segments the brain tissue using
random-walker segmentation and aligns it with the reference atlas
using 3D registration. Finally, the discovered plaques are filtered,
mapped onto biological brain regions and quantified. The method
has some internal parameters that are tuned automatically in order
to correspond to biologically motivated priors.

The main novelties of the proposed pipeline include the following
points.

e We introduce a feedback-loop to fit inner parameters of the
algorithm by incorporating biologically motivated priors. We
demonstrate this strategy to be a generally-applicable frame-
work and we theoretically justify it in lemma 1.

e The proposed method is non-parametric (or tuning-free) and,
therefore, renders the final output to be less sensitive to an
experimentalist’s possible bias, which is especially important in
the pharmaceutical industry.

e The method efficiently analyses data in 3D and robustly esti-
mates not only the number of plaques in a slice, but also plaques
volumetric information.

e We also map the plaques to the reference Waxholm space brain
atlas | |, which provides insights in how exactly the plaques
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Figure 3.4: The brain volume imaged with SPIM (a) is initially pro-
cessed per slice to allow for efficient computations. Each slice (b)
is separated into background (c) and plaque candidates (d). Then
plaque candidates are then aggregated and filtered in 3D. The volume
(a) is downsampled for efficiency, then segmented (e) and registered
with the reference atlas (f). The atlas is used to map plaques to bio-
logical regions. An example of the result (g) shows detected plaques
in green and cerebellum highlighted in red.
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are distributed in different biological regions and how this dis-
tribution changes as the disease progresses.

The high-level pipeline without automated parameter selection is
sketched in figure 3.4 and is described in detail in section 3.2.3. The
general-purpose approach to fit the inner parameters of the algorithm
is sketched in figure 3.5 and described in section 3.2.4.

3.2.2 Related work

Plaques analysis. Many studies have been published on the connec-
tion between Alzheimer’s disease and the number of plaques in brains.
Most of the studies only analyse a single physically cut brain section
at a time | |]. This approach fails to incorporate reasonable
volumetric information and does not allow us to perform whole-brain
analysis.

To introduce volumetric information, the authors of | |
perform analysis on cleared brains in 3D, which follows the idea of
the research presented also in the current section. However, their
method still works only for small areas manually selected by experts
and relies on selecting clustering parameters for detecting the plaques
and therefore can lead to subjective results. Our method, on the
contrary, enables whole-brain analysis and does not rely on manual
tuning and instead uses biological priors to automatically select inner
parameters.

Parameter tuning. Sensitivity to parameter selection is espe-
cially crucial for unsupervised or weakly supervised problems. In this
work we show how to fit the parameters using external knowledge
on some properties of the result. One paper that follows a similar
approach describes a method to tune kernel clustering parameters
| |. The method performs grid search over the possible values
of parameters and selects the one value that corresponds to an opti-
mal walking time. We generalize this approach and show that it is
applicable for a broad range of problems with different types of priors.
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3.2.3 Method description

Notation. Let V' € RP*N*M he the initial brain volume with z-, -
and z-sizes being correspondingly N, M and D. We refer to the in-
dividual brain slice as V; € RV*M j ¢ {1,..., D}. We also introduce
a reference atlas T € {0,..., Np}P*N*M where N7 is the number
of biological regions (we assume same size as V' for simplicity) and
T; jx = p means that voxel (i, j, k) belongs to a region p.

Plaque candidates

We first aim to separate the slice V; into background B; € RV*M and
plaque candidates mask C; € {0,1}V*M B visualizes the volume in
such a way as if there were no plaques. C'is an indicator: voxel (i, j, k)
can belong to a plaque only if C; j , = 1 (the opposite is not necessary
true, at this stage we only identify candidates, so false positives are
expected).

Left-hand side of the figure 3.4 visualizes the initial slice V;, the
brain background B; and the candidate mask C; (black dots corre-
spond to C; equal to 1). We process the data per-slice because of two
reasons: for efficiency reasons and in order to compensate for non-
uniform lightning of some slices during the SPIM imaging process.

Let €(j, k) be a neighbourhood of the pixel (7, k), such that this
neighbourhood is guaranteed to be larger than a plaque size. In our
experiments we define €(j, k) as a set of pixels (p,q) s.t. (i —p)? +
(7 — q)? < r?. Here r defines a neighbourhood radius and depends
on the image resolution. We set it to be two times larger than the
maximum possible plaque diameter in pixels: r := 10.

Then we can define background slices B; as a median filter with
the neighbourhood € applied to the original slice V;. Formally, for
every pixel (j,k) we compute the 50% percentile of the distribution
of pixel values in €(j, k):

B; j 1 = percentile 5 ({Vi%q\ (p,q) € €(j, k) })

The plaque candidates are the pixels that are significantly brighter
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than the background. We formulate this using the threshold ~ of the
ratio between the two:

Cijr=1 ME’Y
i,k
This procedure results in many false positive noise regions outside
of brain tissue (low values of V). We further show how to improve the
results by segmenting the tissue and leaving only the plaques within
the brain.

Volumetric analysis

In order to progress from candidate plaques mask C to final plaque
estimation and to map the discovered plaques to specific biological
regions, we perform three steps, also shown in the right-hand side of
figure 3.4:

1. Segment the brain background B to get the segmented volume
mask S € {0, 1}P>*NxM; g, . =1 <= voxel (i,],k) belongs
to the brain tissue.

2. Filter C such that it does not include small noisy regions and
regions outside of the brain tissue indicated by S.

3. Register atlas volume T to S to get the correspondence of plaque
center (7, j, k) to a brain region.

We downsample the brain background B to obtain matrix S (we
downsample six times across x- and y-axes and three times across z-
axes. Then we upsample matrix .S again to match the original volume
size. This scale change permits faster computations while preserving
resolution that is sufficient for brain tissue segmentation (plaque dis-
covery requires full resolution). But for simplicity we assume below
that the matrices S and T has the same size as the original volume
matrix V.

First we initialize the random walker segmentation | | with
seeds from regions outside of the brain tissue and inside of it. The idea
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of random walker algorithm is that given seeds with known labels, the
unlabeled voxels are each imagined to release a random walker, and
the probability of this random walker reaching a seed with each label
is computed. If the probability of reaching a seed "within" brain
is higher than the probability of reaching a seed "outside" of the
brain, then the voxel is labelled as also belonging to the brain. This
computation may be determined analytically by solving a system of
linear equations | |.

Formally, we initialize seeds S; jr = 1 (as belonging to the brain
tissue) if the voxel (7, j, k) has high relative intensity and S; ; = 0 if
the voxel has low intensity:

Sijk =1 <= Vx> percentileg g ({Vp,q.r|V p,q,7})

Si,j,k =0 <— ‘/i,j,k < percentileo_1 ({V;),q,r‘v b, q, T’})

To discard small outliers and noise of the imaging process, we fil-
ter the initialized values in matrix S using median filtering over the
neighbourhood € defined above. Then we run the random walker al-
gorithm to propagate the seeds to the whole volume. Random walker
segmentation has one parameter 3, which controls the smoothness
versus appearance trade-off. We describe how to fit it in the section
3.2.4.

To filter matrix C, the method analyses the connected components
[ |. A connected component P of matrix C' is represented as a
set of voxels {(i,7,k)}. The size of the connected component is then
defined as |P|. We filter out small regions (|P| < 5) and filter the
regions that correspond to the areas outside of brain tissue, though
leaving only the components P such that S;;, = 1 V(i,5,k) € P.
The components that are left after filtering represent the discovered
plaques.

The final step is to register the atlas volume 7" to the brain tissue
volume S and to assign every plaque to a specific brain region. Any
volume registration technique can be applied | |, but we use a
simple heuristic approach which appears to be very efficient for our
purposes. We first stretch the atlas T' to match the size of the brain
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tissue in each of the z-, y- and z- directions. Then for every slice
i €1,...,D we perform 2d affine registration | | and warping of
T; and S;. Because of continuity in shape of both atlas and brain
tissue, the warping is smooth across z-axes.

Algorithm assigns plaque P to brain region with index & if T; ; » =
k¥(i,j, k) € P. This information is then be aggregated to build the
distribution of plaques numbers per biological brain region, which we
discuss in section 3.2.5.

3.2.4 Feedback-loop for parameters tuning

The core idea behind the feedback-loop for parameter tuning is to
asses the value of the algorithm parameter by validating the solution
produced by the algorithm. By changing the parameters of the algo-
rithm and comparing some properties of the solution to the known
priors, one can find the most appropriate value, i.e. the value pro-
ducing the solution in line with prior knowledge. The outline of the
process is sketched in figure 3.5.

One exact implementation of the proposed parameter tuning pro-
cess is described in algorithm 2. This process is able to find the op-
timal parameters © of an arbitrary algorithm A when the conditions
of the following lemma 1 are satisfied.

Lemma 1. Let the algorithm A depend on the parameter set ©. Also
assume we have formulated a property f of the output of A as a statis-
tic f(A(©)). If the function f(A(0)) is smooth and strictly monotonic
for every 8 € ©, then the binary search procedure 2 is able to identify
the value of the parameters 0 such that f(A(©)) is equal to the desired
prior on [ up to any tolerance level within a finite amount of steps.

The proof follows from the basic properties of smooth monotonic
functions and of binary search. The formal proof of this lemma is out
of scope of this thesis.
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v

_ HA(V,0))

Figure 3.5: The algorithm A starts with the data V' (brain volume)
and the initial parameters values ©. Some statistic f(A(V,0©)) is
then computed on the results. If this statistic f satisfies the conditions
formulated in lemma 1 and the prior knowledge on the expected values
of f is known, then we can adjust the values of © in a feedback-loop
and repeat the whole process until the prior constraints are satisfied.
For example, in our case f computes the average size of the plaque,
which is known from different studies and therefore can be used to
increase or decrease the value of threshold parameter ~.

Algorithm 2 Feedback-loop with binary search
Require: algorithm A, parameter boundaries 0 yin, Omax,
property f, expected property value E, tolerance level e.
repeat
0 := %(emin + gmax)
if (f(A(fmin)) — E) (f(A(8)) — E) then

Omin := 0
else
Omax =0
end if
until ||f(A(0)) — E|3 < e
return 6
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Feedback-loop for plaque analysis

The method for whole-brain plaque analysis described in the previous
section depends on some internal parameters, such as threshold v and
smoothness parameter 5 of the random walker segmentation. These
parameters, if tuned by experts, can introduce subjectiveness into the
results of the pipeline. On the other hand, if these parameters are to
be fixed for different brains, the algorithm will not be able to adapt
to varying factors of clearing and imaging.

Here we demonstrate how the feedback-loop can be used to find
the optimal value for those parameters. We do that by incorporating
biologically motivated priors on the average plaque size and on the
volume of the brain, i.e. we define properties f, and fg to be respec-
tively the average size of a plaque and the overall volume of the brain

tissue:
Zplaques P |{P}|
number of plaques P

fa(AB) =) Sijn

i?j7k

fy (A()) =

For those properties, we have some prior desired values coming
from biological knowledge. From studies like | | we know that
f~ should be approximately 6.5 * 10~® mm?®, which corresponds to
about 20 voxels in our resolution. Desired value for f3 is known from
experimentalists and is unique for every brain, but on average is about
1.5 % 107 voxels.

One can also note that f,(A(¥)) is a strictly monotonic function
for v € [0, 1], and fg(A(B)) is strictly monotonic for reasonable values
of 3 € [10,103]. Therefore, we can apply use algorithm 2 to find the
values of v and B approximately corresponding to the desired priors.

This approach permits to efficiently estimate the inner parameters
~ and [ and therefore the final pipeline with this feedback-loop does
not require any manual tuning.

One important point to notice is the following: the prior infor-
mation has to be formulated in an implicit manner, and should not
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describe the values being estimated. For example, a prior of the num-
ber of plaques would be harmful, because one will always achieve
the desired values even for brains with no plaques detecting purely
noise. On the other hand, these types of priors can be additionally
introduced in Bayesian formulation, as desired, but not enforced.

3.2.5 Experimental results

We apply the described pipeline to six APPPS1 mouse brain volumes
[ |: three young brains (3—4 months) and three old (9 months).
The results coincide with the preliminary expectations that the older
brains should have significantly more plaques in most of the brain
regions.

For example, with the proposed approach we can say that more
than three quarters of all the plaques are developing in neocortex. In
this area we observe significant difference in both size of the plaques
and their numbers. Young brains contain respectively 26859, 19602
and 34152 plaques while old brains respectively 41924, 57292 and
50136 plaques. This result, together with manual result inspection,
serves as evidence for the reasonable parameter tuning by the pro-
posed feedback-loop.

From a biological point of view, we are also able to discover that
cerebellum contains almost no plaques in young brains, but for older
brains the numbers grow very fast, showing how the plaques are prop-
agating through the brain regions: young brains have 177, 428 and
173 plaques while old brains have 1019, 1862 and 2268.

Other biologically-relevant results are discussed in | |.

Expert-tuning comparison

Validation of the proposed pipeline is challenging, as with any unsu-
pervised problems. Because the plaques are not labeled, there does
not exist an error function that can be used to compare different
parameter-tuning approaches.
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Method ‘ Error ‘

Trained on Vj, estimated on V; | 0.8% (training)
Trained on Vj, estimated on V; | 1.4% (training)
Trained on Vj, estimated on V; | 18% (validation)
Trained on V;, estimated on V; | 34% (validation)
Ours estimated on V; 12%
Ours estimated on V; 15%

Table 3.1: Comparison of the proposed tuning-free approach with
cross-validation parameter training. By not overfitting to one specific
section, the proposed method achieves better generalization.

To quantitatively validate the approach, we select two sections V;
and Vj; of one brain volume for manual analysis. For every section,
we ask experts to estimate the number of plaques in these sections.

Then we compare the results of the proposed algorithm (that does
not use any information about the number of plaques) with the cross-
validation approach. The cross-validation approach finds the optimal
value of v by minimizing the prediction error on section V;. Then
the accuracy of the learned value is estimated on section Vj. The
quantitative results are described in table 3.1.

Similar results are achieved when using Vj; for training, and V;
for error estimation. Also, experts looking at only one section at a
time tend to agree with the values of the parameter found by cross-
validation algorithm, even though it poorly generalizes across different
brain regions.

This experiment shows how the proposed approach manages to
find a reasonable non-subjective solution when both experts focus-
ing on one part of the brain, and supervised techniques with limited
labeled data fail.
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3.3 Contributions

In this chapter of the thesis we introduce the problem of automated
analysis of whole-brain volumes and present a computational pipeline
to estimate the distribution of amyloid plaques in cleared mouse
brains.

The core components of the method include adaptive plaque can-
didate proposal, filtering by incorporating volumetric information, at-
las alignment and a feedback-loop to tune the inner parameters of the
algorithm.

The key novelty of the approach lies in using biologically mo-
tivated priors for parameter selection. Incorporating priors on the
expected solution properties results in a tuning-free, efficient and non-
subjective tool for experimentalists.

Other novelties described in the chapter include the following
points.

e The method efficiently analyses data in 3D and robustly esti-
mates not only the number of plaques in a slice, but also plaques
volumetric information.

e The proposed method efficiently maps the plaques to the ref-
erence Waxholm space brain atlas | |, which provides
insights how exactly the plaques are distributed in different bi-
ological regions and how this distribution changes as the disease
progresses.

e The described pipeline efficiently performs volumetric analysis
on a whole-brain scale as opposed to all currently existing meth-
ods.

e An introduced feedback-loop is demonstrated to be a generally-
applicable framework and theoretically justify it in lemma 1.
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Chapter 4

Transformation-invariance

4.1 Introduction

Often in the experimental sciences, data sets display a parameter de-
pendence that is causally related to the measurement process and
that cannot be primarily attributed to the data source. Such depen-
dencies could be lighting conditions in imaging, parameter settings of
the experimental apparatus, and other nuisance factors in the data
acquisition process. When we like to draw conclusions about the data
source and its properties, then these nuisance factors have to be iden-
tified and possibly compensated for by problem adapted priors and
transformations. Therefore, we discuss a last important type of ex-
pert priors that relates to information on nuisance variations in the
data set.

Such nuisances can be formulated as a set of transformations s.t.
these transformations can be applied to the initial data without af-
fecting the final solution, e.g., classification, clustering, etc., of the
problem at hand. An expert biologist might decide in advance that,
e.g. the translation of a cell does not matter for the data analysis,
because cells are by nature oriented randomly in our samples. In this
case the expert formulates the problem as possessing a property of
rotation-invariance.
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Incorporating this type of information, as we show later in the
chapter, is an efficient way to distinguish between relevant and irrel-
evant properties of the data, without formulating hand-crafted rules
and manually selecting features. It allows an algorithm to focus only
on relevant properties by ignoring irrelevant ones. Both from an ex-
perimental and a theoretical perspectives, we argue that incorporat-
ing this information leads to smaller errors, faster training and better
generalization capacity for various types of data sets than processing
the data in their original form. The identification of nuisance influ-
ences on data also highlight a core problem in statistical inference:
to separate the signal that is informative for choosing hypotheses in
the learning process from that part of the signal, which shows little
to no dependence on the solution space. The more often discussed
problem to distinguish signal from noise could be far easier than the
informative signal nuisance signal dichotomy.

While some classes of features permit a transformation-invariant
formulation, in most cases these classes are very limited. To exploit
the class of features as general as possible, we incorporate the in-
formation on transformation-invariance directly into the process of
feature learning. Combining the power of feature learning with prior
knowledge on possible nuisance variations often results in highly infor-
mative features for the current problem, that also preserve the desired
properties of transformation-invariance.

4.1.1 Feature learning

One of the most important and critical steps for the overwhelming
majority of computer vision tasks is concerned with the feature design.
Researchers face a challenging problem of describing local appearance
of a patch around the pixel or voxel with a set of features. These local
descriptors should be robust and sufficiently rich for further processing
with different machine learning algorithms.

A very important but by no means the only example of such an
image processing application is medical image segmentation. The
problem of constructing relevant features arises in this field in the
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most acute way. Experts that label pixels manually often rely only
on local appearance, but are unable to mathematically define the
features that appear to be most relevant for them.

Standard or commonly used features have been developed to
address as many computer vision applications as possible. Different
filters [mat|, SIFT | | and HoG features | | are only few
examples of such features. Even though these features work great for
some tasks, they are unable to adapt to the specific problems and,
therefore, often do not encode all the relevant information.

For some applications experts are able to formalize the desired
properties of the object patches based on the local appearance. For
such applications domain-specific features can be developed. Line
filter transform | | is used for blood vessels segmentation, context
cue features | | — for synapse detection. Domain-specific fea-
tures proved to be very informative, however the development of these
features is time-consuming and expensive while not always possible
and it does not generalize to other domains.

Unsupervised feature learning overcomes the domain-specificity,
as this approach generates features based on the data itself. The

“bag of visual words” representation | | and dictionary learn-
ing | | for sparse coding are procedures that fall in this cat-
egory together with denoising autoencoders | |. Even though

these methods are powerful for data-representation, compression and
image restoration, they exhibit serious limitations when applied to
supervised problems. This phenomenon happens because neither of
the methods rely on the information about the label of the pixels and
therefore learns reconstructive, not discriminative representations.

Supervised feature learning, in contrast, learns the features
of the data jointly with learning the classification functions. Sparse

coding algorithm can be adapted to this procedure | |, but
only with classification functions limited to linear and bilinear mod-
els. Convolutional Neural Networks (CNN) | | are able to

learn more complex classification functions and more complex feature
representation in one optimization procedure, without separating one
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from another.

The most successful techniques in different domains usually fall
into one of the two categories: either they use very powerful domain-
specific features, or they fully rely on supervised feature learning.

In this chapter of the thesis we gradually develop multiple methods
to combine the best of these two approaches: to incorporate domain
knowledge into the process of supervised feature learning. We specif-
ically focus on transformation-invariance as one very common type of
domain knowledge.

4.1.2 Transformation-invariance

Human visual perception proves to be extremely stable to a broad
class of variations in scenes. If objects in images are rotated, or scaled,
or even non-linearly distorted — in most cases we still can recognise
these objects. If we are in advance aware of transformations that can
occur in a data set, than this information can be used to design a
better recognition algorithm with higher generalization capacity and
therefore, higher accuracy than agnostic learners. Being capable of
generalizing over different transformations is a very important prop-
erty of any machine learning approach, and especially of computer
vision algorithms.

The set of transformations to be considered highly depends on the
task that one has to solve and is usually to be defined by a domain
expert. Some common examples are presented in figure 4.1, but a pos-
sible transformation set is neither limited to these examples, nor re-
quires to include all of them. For example, rotation-invariance should
be used wisely for digit recognition task, since rotating the digit "6"
by 180° could lead to its confusion with "9". However, smaller rota-
tions of up to +15° proved to significantly improve accuracy in the
MNIST classification benchmark | |. Scale-invariance can also
harm classification performance if object size is at least somehow in-
formative, for example, in case of classifying healthy cells from cancer
cells | |.

Transformation-invariance is one of the most common types of
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(@) (b) (c)
(e) () ;'(g) (h)

Figure 4.1: Example of transformations ¢ that are usually considered
in computer vision tasks applied to a handwritten digit "5" from
MNIST data set |[LBBHOI8]. (a) shows the original image X, (b)-
(h) show different transformation results ¢(X): rotation (b), shift
(translation) (c), reflection (d), scaling (e), morphological operations
(f), non-linear distortions (g), brightness, contrast change (h).

expert, priors that is often available, but rarely used. The reason for
it being that the most powerful feature learning approaches are able
to incorporate this information only in a very limited manner, e.g.
through data augmentation only. We, on the contrary, propose to
reformulate features being learned in such a way, that they will be
provably transformation-invariant. We discuss the relations between
our approach and augmentation in detail in section 4.4.

The structure of the chapter is the following. In section 4.2 we
start with formulating a general method for segmentation and classi-
fication problems, called Convolutional Decision Trees — this method
does not rely on hand-crafted features, but works with raw pixel val-
ues, similar to CNN. We then extend this approach to Transformation-
Invariant Convolutional Jungles by introducing transformation-invariance
in section 4.3. Finally, we generalize the approach to incorporate
transformation-invariance into more complex algorithms, such as Deep
CNNs in section 4.4, resulting in Transformation-Invariant Pooling.
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4.2 Convolutional Decision Trees

In order to overcome the problem of feature design, different methods
were proposed to automatically learn discriminative local descriptors
[ , |. Among them, Deep Convolutional Neural Net-
works (CNN) | | emerged as probably one of the most attractive
methods for supervised feature learning nowadays. The key CNN de-
sign strategy is not to separate feature learning process from complex
decision function learning, which results in better synergy between
the two. All of the approaches proposed in this chapter also follow
this strategy.

Convolutional Neural Networks demonstrated to achieve superior
performance for different tasks like face recognition | |, hand-
written character recognition | | and neuronal structure segmen-
tation | |. On the other hand, CNN suffer from the significant
disadvantage that they require very large training data sets and con-
sume an often impractical amount of time to learn the network pa-
rameters. Therefore, special hardware cluster architectures have been
developed to make CNN applicable for real world tasks [ |.
These constraints render the process of using CNN for end users very
difficult and often even unfeasible.

This section presents Convolutional Decision Trees (CDT): a sig-
nificantly accelerated algorithm for adaptive feature learning and seg-
mentation. It belongs to a family of oblique decision tree algorithms
[ | adapted for structural data such as spatial structure of the
patches in image segmentation. As we show in the following sec-
tion 4.3, it also serves as a basis for incorporating transformation-
invariance. The algorithm builds on the following ideas:

e we recursively build multivariate (oblique) decision tree,

e cach tree split is represented by a convolution kernel, and there-
fore encodes a feature of the patch around the pixel,

e convolution kernels are learned in a supervised manner while
maximizing the informativeness of the split,
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e regularization of kernel gradients produces interpretable and
generalizable features,

e regularization parameter adaptively changes from one split to
another.

These structured oblique trees significantly differ from non-structural

by smoothness regularization of the learned kernels. Complexity con-
trol of feature learning renders the optimization problem more ro-
bust, regularized learning produces more interpretable features and it
largely prevents overfitting. The key advantage is that the features
learned adaptively for one task are informative and meaningful and,
therefore, can be used for other tasks.

These ideas generate a significant performance increase compared
to CNN training procedure (up to several orders of magnitude faster
training), while keeping the accuracy level comparable to state of the
art. The combination of high accuracy and fast training enables any-
one to use this algorithm on general purpose single processor desktop
hardware.

The procedure demonstrates convincing result improvements both
for medical and for natural image segmentation, as demonstrated
in section 4.2.4. Here we focus on a segmentation task. Following
the method described in | |, however, the approach can be
adapted also for tasks like object detection, tracking and action recog-
nition.

4.2.1 Related work

Feature learning

The proposed algorithm falls into the category of supervised feature
learning approaches as it learns the features of the data jointly with
learning the classification functions. As discussed in the introduction
section 4.1, CDT ideology is similar to the one of a CNN, but with
training speed being the key advantage.
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Figure 4.2: FExamples of different convolutional kernels: commonly
used kernels (left) and the kernels obtained with the proposed algo-
rithm (right). The algorithm finds the most informative kernels in
a supervised manner, discovering meaningful kernels that look like
gaussian blur, edge filters, corner and junction detectors, texture fil-
ters, etc.
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For example, for neuronal segmentation data set | |, the
authors of | | use CNN that achieves impressive accuracy, but
that trains for almost a week using a special-purpose GPU cluster.
In contrast, the proposed method combines the flexibility of arbitrary
convolutional kernels with the speed of decision tree training. De-
pending on the task, first reasonable results for smaller trees can be
obtained within one hour, while larger trees produce state of the art
results in less than 12 hours training with one CPU which makes
this method feasible for "plug-and-play" experiments. CNNs with
the same training time (smaller CNNs or CNNs trained with different
strategies) do not achieve comparable results.

Binary decision trees

Learning decision trees pursues the idea to consecutively split the data
space into parts according to a predicate ¢ (s.t. ¢(xz) = 0 for points
x in one half-space, and ¢(z) = 1 for x in another half-space). The
predicate is selected in such a way that it maximizes a task dependent
measure of informativeness, e.g. Information Gain or Gini’s diversity

index | |. = € R? is a vector of features or attributes of the
object: x’ represent j-th feature of the object.
Decision trees most commonly are univariate | |. For-

mally that means that the form of the predicate is limited to ¢(z) =
[z7 > c]. Here [statement] denotes Iverson brackets which equals to
1 if statement is true and zero otherwise. j and ¢ are the parameters
of the split. The choice of only univariate splits limits the computa-
tional complexity and it allows us to efficiently find the most infor-
mative split. However, it has been demonstrated that in many cases
univariate trees require many more splits to learn a classifier and lead
to results that are difficult to interpret | |-
Therefore multivariate (oblique) trees were proposed | ,
, |, that allow the predicate to learn arbitrary linear
splits: ¢(x) = [z78 > ¢]. Here 73 is a linear combination of the
attributes, # € R? and ¢ are the parameters of the split. Depending
on the criteria of informativeness, most algorithms only return locally
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optimal splits. Optimization procedures to find the parameters max-
imizing informativeness of the split include local clustering | I,
hill climbing | | and general-purpose optimization techniques
such as simulated annealing | |.

The proposed algorithm develops the idea of oblique trees for
learning convolution kernels in the context of image segmentation
problems. Through regularization it incorporates the structural in-
formation about the spatial neighborhood of the pixels. Introducing
this regularization helps the learned splits to be more interpretable
and the optimization problem to be more robust.

4.2.2 Method description: split

Notation. As a training set we assume K pixels i € {1,...,K}
with associated binary labels y; € {—1,1}. Local pixel appearance is
described with a patch around it. Let the size of a patch be w x w,
then each pixel i is represented with w? intensities of the pixels in the
patch. In homogeneous coordinates, pixel 7 is described by a vector
T; € R*+1 with x;1 = 1. All the vectors stored row-wise form a
data-matrix X € RE * w2+1, X =[xy,...,vx]T.

The main idea of the method is to find a smooth convolution
kernel that would be informative and discriminative for separating
one class from another. A kernel of a convolution is again a w X w
matrix. We also extend a vectorized kernel with a shift parameter b
for the predicate. We define vector S to encodes both shift and kernel
parameters: 3 € ]Rw2+1, B1 = b and By.,,2,1 encodes the kernel of the
convolution.

The predicate form can be now defined as ¢(z;, ) = [BTx; > 0].
As here we care about the sign of the convolution, we also introduce
the constraint ||3]|3 = 1 to overcome the disambiguities induced by
different scalings.
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Information Gain

We want to estimate the parameter vector 8 that would maximize the
information gain IG(/3). Information gain depends on the distribution
of positive and negative samples before and after a split with the
predicate ¢. The intuition behind the information gain is that it shows
how much does the entropy changes after the split is performed.

Let us define P as the number of all positive samples: P =
>lyi =1], N = K — P — the number of negative samples. After
the split, the half-space, where ¢(z, 8) = 1, will contain k samples:
p positive and n negative. n = > [¢(z, 8) = 1], p = > . [¢(xi, B) =
1,y; = 1], n =k — p. p, n and k depend on the parameters 5. Then

1G(3) = H <;> - <I]2H (%) + KI;kH (;:Z)) (4.1)

where H denotes the Bernoulli entropy:

H(q) = —qlogy q — (1 — q) logy(1 — q).

Then the problem of finding the most informative split is formal-
ized as follows:

B € arg max IG(B) (4.2)

Unfortunately, the maximum of IG(8) cannot be found efficiently
because of discontinuity in ¢(z;, 3) as it contains an indicator function
[3T2; > 0]. To overcome this issue we use an approximation from

[ I

A 1
¢O¢($i7/6) - 1 ‘l—eXp(—O[BTCCZ')

We also introduce po = > ;... balzi, B), N = Digi——1 ba(Ti, ),
ko = Pa + N Then the information gain can be approximated with

(4.3)
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wo-n ()= (e () 55 (=) o

It is easy to see that ¢q(zi, ) converges to ¢(x;, 8) in the limit
a — 0o. Also p, and 7, converges to p and n, respectively. This
asymptotics renders it possible to solve the original problem (4.2) by
estimating a limit process, i.e., we investigate the sequence of solutions
of a relaxed problem for increasing «:

B e argmﬂaxIG(B) = lim arg mgXICa(B)

a—+00

Regularization

Maximizing the information gain with respect to 8 usually results in
a split that separates the classes, but unfortunately not interpretable
(see for example figure 4.3). More than that, when the number of
training samples goes to the range of O(w?) (approximately equals
to the number of parameters), the linear split model starts to overfit.
This problem requires us to introduce a regularization parameter A
that penalizes the complexity of the learned kernel parameters 8. We
want to assure that the kernel is smooth, and, therefore, we penalize
the gradient of the kernel:

fa € argmax Lo(B) with Lo(B) = 1G4 (B) = AI[TB|l3  (4.5)

Here I' € R2w(w=1) x (w?+1) 5 4 matrix of a 2D differentiation operator
in a vectorized space, that is a Tikhonov regularization matrix.

Regularization serves two main goals. First of all, it guarantees
interpretability of the kernels learned (see figures 4.2 and 4.3). And
second, from an optimization point of view, a strictly concave regu-
larization term steers the gradient descent optimization algorithm out
of local minima.
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Figure 4.3: Examples of convolution kernels learned with different reg-
ularization parameters A. Each row represents a kernel from different
levels of CDT (respectively from 1 to 4). Each column stands for dif-
ferent regularization parameters: 0.001, 0.01, 0.1, 0.5, 2, 10. Increas-
ing regularization helps the learned features to be more interpretable
(compare first columns with the last ones). However, increasing A too
much results in smoothing out relevant information (for example the
orientation of the third kernel disappears in the last two columns).
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Optimization

In practice, we need to choose an initial point and the gradient of the
functional to effectively find a solution of the problem 4.5. As initial
point, we use the solution to a simple regularized linear regression:

1
fo = argmin [|X8 — VI3 + A|TSI3 (4.6)

Here Y = [y1,...,yk]T is a vector of all the responses and T’
denotes a Tikhonov matrix associated with the regularization above.
The analysis is equivalent to ridge regression, except of the form of
the T" matrix. The analytical solution to problem (4.6) is equal to

Bo = (Il{XTX + )\FTF> xTy.

The derivative of the functional L,(3) in (4.5) can be also found
analytically:

dLq _72 aexp(aflz;) { —1og L—F

(1 + exp( aﬁTml)) K —k
n ) —or’rs
-n

(4.7)

ly: = 1]logy

p
P_p"‘[yz‘:—l}logzN

As an optimization algorithm, we employ Quasi-Newton Limited-
memory BFGS (L-BFGS) | | that estimates Hessian with low-
rank approximation and, therefore, selects optimal step size.

Assuming optimization procedure as a subroutine called L-BFGS,
we sketch the algorithm that finds one split by learning the most
informative convolution kernel in algorithm 3. We do not directly
estimate the limit in equation 4.2, but instead we iteratively increase
« and initialize the optimization procedure in the next step with the
solution in the previous step.
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Algorithm 3 Function findSplit: learning most informative split

Require: training samples x;,7 = 1,..., K with classes y;; A

Bo = (L XTX +X2I7T) ' XTY b initialize with MSE solution

Bo := Bo/|lBol|3 > project on the unit sphere

Set a:=1

repeat
Ba := L-BFGS(Lq(+), ‘%7‘*(-), Ba-1) > find arg maxg Lo ()
Ba = Ba/llBall3 > project on the unit sphere
a=a+1

until ||8, — Ba-1]|3 < € OR a > MaxIterations

return S,

4.2.3 Method description: tree

How can we use the procedure findSplit to build a classifier? A
well-known idea is to recursively split the data space into parts. The
recursion stops when we achieve certainty about the label of every
part. All sequential splits are encoded in a binary decision tree.

The idea is very straightforward, so we do not discuss it in detail,
except for one important question. So far we defined the regulariza-
tion parameter A for only one split, but in principle we can change
it from split to split, or from one layer of the tree to the next. Ex-
periments show that choosing one parameter A for all splits in a tree
often results in kernel overfitting as the tree grows large.

Assume that we want to find two splits in two different parts A
and B with volumes respectively Vol(A) and Vol(B). The relation
between A4 and Ap for this two problems can be established from
the following intuition: we want the range of both problems to be the
same: for the data part -||X 8 — Y||3 and for the regularization part
A||TB|[3. We provide the following heuristic rule to adaptively change
regularization coefficient:

Vol(A)>2/(w2H)

A=A (Vol(B)

81



CHAPTER 4. TRANSFORMATION-INVARIANCE

Lemma 1 explains the choice of this heuristic rule and assumptions

behind the choice.

We can compute the volumes ratio xg%ggg exactly as both compact

regions are polyhedra, but in practice we approximate this ratio with
just the fraction of the data points falling into each of the compacts
A and B. The final recursive algorithm for building the convolutional
decision tree is sketched in algorithm 4.

Algorithm 4 Function buildTree for decision tree construction
Require: set of indices I, A\, MaxSamples
Pi=%ierlyi = 1k;
N =D ierlyi = —=1J;
treeStruct.answer = 5
if P < MaxSamples or N < MaxSamples then > terminal node
treeStruct.left = null
treeStruct.right = null
else > split recursively
B := findSplit(x;, y;, Vi € I; \)
Lty := {Z el: BTa;i > 0}
Light = {i € I : BT2; <=0}

2/(w?+1)
Aleft = A (| I|1if‘t|) > change lambda
S 1| 2/(w?+1)
)\I‘lght - )\ (IIrightl)

treeStruct.left = buildTree (i, Aleft, MaxSamples)
treeStruct.right = buildTree(/yight, Aright, MaxSamples)
end if
return treeStruct

Lemma 1. Assume that training data points are uniformly distributed
in a compact set A and in a compact set B that is equal A up to a
rescaling constant. Then the optimal relation between Mg and Ap is
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defined through the following equation:

A\ Vol(B)

I

where optimality is defined through the range of problems solved for A
and B, i.e. we want both first and second term of the functional 4.0
to be of similar values for A and B.

Proof. From the assumption we make, A is equal to B with some
scaling factor ¢, where scaling is applied in every dimension.
Then the volumes are also connected multiplicatively with the

2 . . 2
factor ¢+, where w?+1 is dimensionality. Therefore \\;2}5}13; = vl

2
and ¢ = \\Zsiggg YD
Let D4 be the data matrix of the points contained in A and Dpg
— the data points contained in B. As D4 is uniformly distributed
in A and there is a multiplicative scale constant from B to A, up to
renumerating the samples we can approximate D4 ~ cDpg.
We want the first term of functional 4.6 to be of similar values:

1 1
[ K KB

1DaBa = Y3~ =—IIDpfp — Y5
To achieve that, the values of 84 should be rescaled inversely to the
relation between the data matrices: 54 ~ %ﬁ B.
Incorporating the last equation into A4 ||TB4l|3 ~ Ag||TB5|3 (the
second term of functional 4.6), we get /\AC%HFBBH% ~ \g||ITB5||3.
Dividing by ||T'85||3 and plugging c finishes the proof. O

4.2.4 Experiments

Experimental settings

We test Convolutional Decision Trees on biological and natural image
data sets. First 2/3 of the images are selected for training, and accu-
racy is reported on the last 1/3. Because in both data sets the classes
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are imbalanced, we measure the accuracy in F-score: a commonly
used metric that combines precision and recall:

2Precision Recall
Precision + Recall”

F-score =

We obtain probability maps inferred by the proposed algorithm
with the following parameters fixed for both data sets: w =31, A =
0.5 (initial value for the first call of buildTree function) and MaxSamples =
50.

All the experiments are performed on a single AMD Opteron 6174
CPU. The speed/accuracy tradeoff is controlled by the number of
iterations of the L-BFGS subroutine. We set it in such a way that all
the experiments finish within 12 hours (overnight experiment).

To get the final segmentation from the probability maps, we apply
standard Graph Cut algorithm | | with the parameters selected
by 5-fold cross-validation.

Neuronal segmentation data set

As an example of a biological data set, we use the neuronal segmen-
tation data set described in section 2.2.2.

The best results on this data set are achieved using Convolutional
Neural Networks. In terms of F-score, the accuracy of this algo-
rithm is approximately the same as the accuracy of a human expert
| |. Our results appear to be just 2.2% worse in absolute val-
ues (82.9% CDT vs 85.1% CNN), however, the CNN training time
for this data set is around one week using GPU, comparing to just
12 hours for the proposed method. Training CNN for 12 hours pro-
duces results comparable to the other state of the art method that
trains in a reasonable time, such as our results described in section
2. A Random Forest (RF) algorithm with specially designed features
produces a probability map that is then segmented with a Graph Cut
algorithm that uses special potentials. Even though we use a sim-
pler segmentation algorithm, CDT produces better probability maps.
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Figure 4.4: The results of the proposed algorithm on a neuronal
segmentation data set. Column (a) shows the input image and the
ground truth. Columns (b) and (c¢) demonstrate the qualitative re-
sults of the algorithm for the small tree (depth = 3) and the full tree
(depth = 17). The results include the probability maps (top) with
a Graph Cut segmentation (bottom). The last column (d) shows
the results of CNN (top) and RF with predefined features (bottom).
Qualitatively the results are comparable with CNN and looks much
better than RF results.
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——Test
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=== Baseline 2

7 8 9 10 11 12 13 14 15 16 17 18
Tree depth

Figure 4.5: Quantitative comparison. Baseline 1 is a CNN | ]
which produces slightly better results, but is infeasible to train on a
single CPU. Baseline 2 is a RF with Graph Cut segmentation (de-
scribed in detail in chapter 2), which we outperform by 4.5%.

Quantitatively this choice results in 4.5% increase in F-score (82.9%
CDT vs 78.4% RF).

Weizmann Horse data set

The Weizmann Horse data set | | is well-known in the computer
vision community. It consist of 328 manually labelled images of horses
in different environments.
There are many methods that perform well on this data set | ,
, |. As a baseline we consider general purpose segmen-
tation method based on superpixel grouping | |. This method
produces the best results on this data set compared to methods that
do not use prior information: 79.7%. Quantitatively we achieve 80.4%
and outperform it by 0.7% (insignificantly). There are also other
methods that exploit domain-specific prior information on the shape
of the horse silhouette | | and achieve superior results of 89.2%
(up to 8.8% better). However, we do not compare with them as they
are limited to specific segmentation tasks where shape information is
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Figure 4.6: The results on the Weizmann Horse data set. Left column
(a) shows the input image and the ground truth label. Each of the
following columns (b)—(e) demonstrates the qualitative results of the
algorithm for different tree sizes (respectively 4, 8, 12, 18). The results
include the probability map (top) and the Graph Cut segmentation
(bottom). Qualitatively the results improve significantly as the tree
grows and more advanced features are learned.
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Figure 4.7: Quantitative comparison of the proposed algorithm with
two state of the art approaches. Our method slightly outperforms
baseline 2 that is the best approach across methods with no prior
information | |. Baseline 1 is better by 8.7%, but uses domain-
specific prior information | |.

know a priori and our method is applicable to a much broader class
of segmentation tasks.

4.3 Transformation-Invariant Jungles

The importance of the transformation-invariance to different com-
puter vision problems is difficult to overestimate. The transformation-
invariance is one of the most common types of expert-formulated pri-
ors that helps to distinguish between relevant object features from
variability of irrelevant nuisance factors, as discussed in section 4.1.

In this section we present an algorithm called Transformation-
Invariant Convolutional Jungles (TICJ), that is based on the previ-
ously discussed Convolutional Decision Trees (CDT), but supports to
efficiently incorporate transformation-invariance in the learning pro-
cess.

As a first step, expert needs to carefully identify a set of trans-
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formations that most likely do not affect the results. Once a set of
transformations for a given task is known and fixed, there are three
main ways to incorporate this prior knowledge: (i) change the data
set itself, (ii) use transformation-invariant features or (iii) modify the
learning algorithm. Arguably the most popular approach is the first
one, which enlarges the original data set by adding the images that
were transformed according to our prior beliefs. This strategy enables
the recognition algorithm to observe all the instantiations of the data
and, in case of flexible models to adapt to all considered transforma-
tions.

Enlarging the data set, however, implies also to significantly ex-
tend the training time and it requires extensive computational re-
sources. But very large data sets pose only one of the problems: to
cope with larger variations in data sets, data analysts usually have to
increase the number of parameters in modeling, requiring even more
training time, more memory, and posing the risk of over- or underfit-
ting. Therefore, current research investigates advanced techniques to
avoid this pitfall, as reviewed in section 4.3.1.

The proposed method is inspired by the idea of the pooling opera-
tion, that preserves some local invariances and seems to be biologically
plausible | |. We follow this idea to incorporate prior knowledge
about the transformations through learning transformation-invariant
features of the images. We define these features through the convo-
lutional kernels, but instead of convolving the image itself with the
kernel, we propose to compute the maximum over many convolu-
tions: with the given image, and with all the considered transforma-
tions of this image. This nonlinear operation assures transformation-
invariance, as the value of the maximum is exactly the same for the
original image, and the image that was transformed (see lemma 2 for
more details).

Section 4.3.2 discusses how these features can be efficiently trained
in a supervised manner to fit the needs of the specific task, and how
they can be regularized to get interpretable transformation-invariant
features that generalize well.
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The proposed algorithm TICJ uses this transformation-invariant
feature learning procedure to build an image classification algorithm
(or per-pixel segmentation algorithm). This goal is achieved by iter-
atively learning the features and combining them together in a feed-
forward modification of the Decision Jungles algorithm | |.
Comparing to Decision Trees | |, this algorithm proves to better
prevent overfitting, and also efficiently works with limited memory
constraints. The combination of the proposed feature learning algo-
rithm and the proposed modification of Decision Jungles allows us to
achieve state of the art results with modest training time, as described
in section 4.3.2 in detail.

The main properties and contributions of the proposed method
are summarized as follows:

e Transformation-invariant feature learning allows us to incorpo-
rate any types of transformation invariances as prior constraints.
This method results in good generalization without enlarging
the original data set size or the parameter space.

e Regularization is enforced in two different ways by the learning
method and it serves the purpose of producing interpretable fea-
tures. These features are easy to debug, since they are defined
through convolutional kernels and they support visual inspec-
tion (see figure 4.8). Regularization also helps when the data
set is small: as we show in the experimental section 4.3.3, TICJ
can efficiently be applied for data sets starting from only tens
of images.

e The final classification algorithm is computationally very effi-
cient and, unlike many state of the art techniques, can be easily
run on a single CPU within a modest training time. In our
experiments, the proposed method is up to two orders of mag-
nitude faster than, for example, Deep Neural Networks, while
achieving state of the art classification performance (see section
4.3.3).
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e The method has only few hyperparameters, and we show in sec-
tion 4.3.2 how they can be efficiently tuned. This simplicity of
the method makes it highly suitable for plug-and-play exper-
iments in comparison to many other modern computer vision
techniques.

We also propose a modification of the node clustering technique
for Decision Jungles and thereby, we overcome the problem of global
clustering that produced poor results as mentioned in the original
Decision Jungles paper | |. This contribution is discussed in
more details in section 4.3.2.

4.3.1 Related work
Predefined transformation-invariant features

One of the easiest ways to incorporate partial transformation-invariances
is to use special types of predefined, often “hand-crafted” features, i.e.,
the scale-invariant feature transform (SIFT) | | or its rotation-
invariant modification RIFT (rotation-invariant feature transform)

| | have proved to boost performance in a broad range of image
processing applications and imaging modalities.

These features are designed to be general-purpose and transformation-
invariant, and they satisfactorily solve the task in many cases. How-
ever, they are limited in two ways: they only can incorporate very
specific transformations, and they do not adapt to the task being
solved.

One of the ways to overcome the second deficit is to design hand-
crafted features for the specific task. Line filter transform | | for
blood vessel segmentation is one of the examples of domain-specific
features, which is also rotation-invariant. But designing the features
manually is time-consuming and expensive while not always possible.

The proposed method, in contrast to predefined features, not only
learns the features in a supervised manner, but also allows one to
incorporate any types of invariances.
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Transformation-invariant feature learning

Instead of designing features for every different task, one could learn
these features automatically such that for every data set a set of
learned features would be the most representative and/or discrimi-
native one. Four approaches that follow this idea are "bag of visual
words" (BOVW) | |, Convolutional Decision Trees (CDT, in-
troduced in the previous section 4.2), Sparse Coding | | and
different types of Neural Networks.

Some of these classes can posses the property of transformation-
invariance. For example, BOVW does not distinguish the positions
in which the "visual word" occurs, and therefore it is a shift-invariant
method. A modification of BOVW method, called RBOWV | |
also learns features invariant to rotation.

CDT trains the features as convolutional kernels, which resem-
bles our proposal. However, CDT does not permit to incorporate
transformation-invariance. Another key difference between the method
proposed in this chapter and CTD is that we solve a convex approx-
imation to the information gain formulation of the split objective.
The approximation produces comparable results to the information
gain maximization procedure, but allows us to find the solution sig-
nificantly faster.

Sparse Coding algorithm can be also modified to learn overcom-
plete shift-invariant image representation as presented in the paper
[ |. We consider neural networks in the following section.

The proposed algorithm incorporates various ideas of the above
methods to learn features from data and, simultaneously, to adapt
to the specific task. But unlike both BOVW and Sparse Coding
algorithms, it allows us to incorporate many different types of trans-
formations.

Transformation-invariant neural networks

Deep Neural Network architectures are the richest model classes used
nowadays in computer vision and they enable very impressive results
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in many tasks. Because of their richness, many modifications can be
implemented to incorporate different types of prior knowledge in the
training process itself. Not surprisingly, transformation-invariance is
also actively discussed in this field.

The most commonly used property of Convolutional Neural Net-
works that enables some transformation invariance is a subsampling
layer | | with maz-pooling. Because the maximum is taken over
the neighbouring pixels, local one-pixel shifts usually do not change
the output of the subsampling layer. A more general pooling op-
eration | | allows one to also consider local rotation and scale
changes. As usually many layers are stacked in a hierarchy on top of
each other, the window size for local invariances increases.

Other techniques that support invariances to a rich transforma-
tion class include topographic filter maps | |, that learns fea-
tures invariant to rotation, shift and scale changes, and the algo-
rithm presented in | |, where local transformations that can be
approximated as linear transformations. However, neither of these
approaches can learn arbitrary set of transformations. Another sim-
ple approach that works without enlarging the data set and the model
size is presented in | | and | |. The idea is to train differ-
ent models with the same topology but using different data sets: the
original data set, and the transformed data sets (one model for every
transformation considered). Then either the weights of these models
are averaged to produce one new model, or the outputs of the net-
works vote for a majority, forming an ensemble of models. This last
approach is widely used and we compare our algorithms to it as a
baseline in one of our experiments (see section 4.3.3).

4.3.2 Method description
Notation

Let us consider an image classification data set with K classes that
consists of N images. Let X; € RY*" be the i-th image in this data
set represented by a square real-valued matrix of pixel intensities,
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where i = 1,..., N and w is the size of the image. For simplicity we
consider square images, however, the method naturally generalizes
also to rectangular images. In homogeneous coordinates, the image
X, is described by a vector x; € R+ with i1 =1

Every image X; has an assigned class y; € {1,..., K}. The task
of an image classification algorithm is to return a class estimate g for
a new unobserved image X.

Assume ® to be a set of all considered transformations. ® =
{$1,...,¢1}, where ¢; denotes a transformation function and 7" spec-
ifies the number of transformations. If X is an image, then ¢(X)
represents a transformed image of the same size w X w. For simplicity
of notation, ¢(x) also denotes an extended vectorized representation
of the transformed image ¢(X). ® always includes the identity trans-
formation ¢g : ¢o(X) = X.

The reader should notice that ¢ can represent either one of the
simple transformations shown in figure 4.1, or the combination of
these transformations. For example, ¢3 could be the composition of

¢1 and ¢: ¢3 = ¢1 0 ¢ means that ¢3(-) = ¢d1(P2(-)).

Transformation-invariant feature definition

As discussed in section 4.3, we parametrize a feature with a convolu-
tional kernel § € R¥**1. The value of the feature for an image X is
given by:

z) = max 07 ¢(x 4.8

fola) = max 67 o(z) (4.

Because of the maximum operation, this equation in most cases

gives exactly the same result fy(x) for the image X itself, and for

the transformations of this image ¢(X). Lemma 2 formulates the
conditions on the set ® for which this holds true.

Lemma 2. The feature of the image X defined in equation 4.8 is
transformation-invariant if the set ® of all possible transformations
forms a group, i.e. satisfies the axioms of closure, associativity, in-
vertibility and identity.
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Proof. In order to prove this statement, the value of the feature has to

be the same for all the transformations of the image. Since ® always

contains an identity transformation, we can compare the value of the

feature with the value of the feature for the identity transformation

¢o. So we need to show that fy((X)) = fo(do(X)) = fo(X), Vi) € .
For any transformation ¢ € ® the following holds:

fo(¥(x)) = max " p(¢(x)) = max T p(a).

pee p=¢otp: pc®

The closure axiom implies
{pop:pecd} C . (4.9)

On the other hand, invertibility axiom assure the existence of an
inverse, V¢ € ®,3 ¢~ 1. Furthermore, ® D {¢poy !, ¢ € ®} = U (as
for ¥ we select only the elements of the set ® that can be represented
through a composition with ¢~1).

Therefore,

{pop:pe®} D{pop:¢pc ¥} =
{povlop:pecd ={p:6cd}=0. (4.10)

Equations 4.9 and 4.10 show that {po v : ¢ € ®} = & and
therefore, the set over which the maximum is taken stays the same,
which shows that fy(¢(X)) = fo(X). O

The statement of the lemma is satisfied for many computer vision
tasks: basically all the simple transformations shown in figure 4.1 as
well as their compositions form a group. The most common examples
of the transformation sets that do not satisfy this property include
local shifts (jittering) and local rotations. For example, if one wants
to consider only one pixel shifts, then the closure axiom of the group
does not hold: one pixel shift applied twice gives two-pixel shift, which
is not in a transformation set.
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However, one can easily modify the definition of the feature such
that it stays transformation-invariant with respect to local transfor-
mations:

foll) = masx 070(1(x) (.11)

This formulation allows us to relax the closure axiom of the whole
set to the closure of only two elements of the set. Features defined by
equation 4.11 are invariant to every transformation in ® (but not in
{pot) : ¢,¢ € ®}) if the transformations set ® contains all the inverse
elements and the identity element. The proof of the last statement
stays almost the same, but employs the notion of subgroup instead of
the group.

Therefore, if one wants to consider only local transformations and
lets ® to contain, for example, one pixel shift to the left and to the
right (together with an identity transformation), then the set over
which the maximum should be taken includes shifts by one or two
pixels.

In the following, we consider the definition 4.8 of a feature to
simplify our notation.

Feature learning

Lemma 2 shows that the features formulated in equation 4.8 are
transformation-invariant. However, one also needs to establish the
procedure of learning the parameters 6 of the feature.

Assume that we select two classes ¢1,co € [1,..., K] and we want
to separate the images of these classes. We propose to find the pa-
rameter vector 6 by solving the following optimization problem:

6 = arg m@inE(@) = argn%in A|TO]3 +
S (fe(Xi) + lyi =] = [y = cal)” (4.12)
i1 Yij=cC1 Or Y;=cC3

Here fy(x) is a feature defined in 4.8 and [-] refers to Iverson brackets,
that are equal to 1 if - is true and zero otherwise. Following this no-
tation, [y; = c1] — [yi = c2] is equal to 1 if y; = ¢; and equal to —1 if
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Figure 4.8: Examples of different kernels 6 learned with TICJ algo-
rithm applied to a neuronal segmentation data set. One could see that
the features are relatively meaningful: features (a)—(c) detect direct
lines (this correspond to straight membranes in the data set), (d) de-
notes the contrast of the center pixels comparing to the surroundings,
(e) and (f) detect corners and curvatures (non-straight membranes),
(g) and (h) — membrane conjunctions and textures of neuronal tissue
(high-frequency features).
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1y; = co. Matrix I' € R2w(w—1)x(w?+1) g 5 matrix of a 2D differentia-
tion operator in a vectorized space, that is a Tikhonov regularization
matrix. Penalizing the gradient of the kernel enforces the kernel to
be smooth. A is a regularization parameter that controls the trade-off
between the goodness of separation and the smoothness of the learned
kernel.

Regularization serves two main goals. First of all, it ensures in-
terpretability of the inferred kernels (see figure 4.8). Second, from
an optimization point of view, a strictly concave and differentiable
regularization term increases the convergence speed of the gradient
descent optimization algorithm.

In order to efficiently find the minimum of E(#), we also compute
the subgradient of the functional 4.12:

dE

a0 > 2(f0(Xi) +lyi=al—lyi= 62])@-(&-) + 2719
it y;=cy
Or Y;=cC2

where ¢; = argmaxyco 67 ¢(X;) is a transformation that gives the
maximum response for an input image X;.

Based on the formulas 4.12 and 4.13 one can implement an op-
timization algorithm that finds the optimum value of 6 for a given
data set {X;,y;} and for two selected classes ¢; and cy. It is impor-
tant to notice that the problem 4.12 is not continuously differentiable
because of the maximum in the definition of fy(X'), however, it is con-
vex and therefore one is guaranteed to find the global optimum of the
problem. In our experiments we selected the L-BFGS optimization
subroutine | | as it always yielded the highest convergence speed
for the tasks we consider. The constructive version of the algorithm
is sketched in figure 4.9.

One important question is how one selects ¢; and co. We propose
to take them at random with the probabilities p. proportional to the
presence of the class ¢ in the data set: p. ~ |{i : y; = c¢}|. This
choice assures that we try to separate the largest classes with high
probability, but also leaves room for randomization of the algorithm,
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P
S - - . = [max]
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Figure 4.9: Partial visualization of the feature learning process. For
all the images x, we compute the transformations ¢(z),Ve € ® (a).
Every image after transformation is convolved linearly with the cur-
rent kernel vector 6 (b). That gives the response for every trans-
formation, from which we select then the maximum fp(x) and the
corresponding transformation ¢ that gives maximum response (c).
These values are then used to compute the functional value and the
gradient of the functional value (d) when combined with the regular-
ization term (e). The gradient step %€ then updates the value of the
feature parameters 6.
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which is important for ensemble learning discussed in section 4.3.2.
There, we also discuss the problem of selecting the regularization
parameter .

TICT and TICJ: Transformation-Invariant Convolutional Trees
and Jungles

Section 4.3.2 shows how to learn the parameters of a transformation-
invariant feature that splits the data set into two subsets: one sub-
set consists of the images X; : fp(X;) > 0, another of images X; :
fo(X;) < 0. That means that the feature defines a split predicate on
the space of images, and therefore can be used in algorithms such as
decision trees.

This section discusses how to learn these features and combine
them in an iterative feed-forward manner to build a final image clas-
sification algorithm.

Transformation-Invariant Convolutional Trees

Following the idea of decision trees | |, we learn one feature and
then split the whole data set into two subsets according to the pred-
icate defined by this feature. To each of the subsets the same idea
can be applied recursively until a termination criterion is satisfied.
We call this algorithm Transformation-Invariant Convolutional Trees
(TICT).

Formally, we start with a root node that accepts the whole data
set {X;,y; : i = 1,...,N} as input, and trains 6 to define a root
feature. Then we split the training data set into subsets [; and [o:
I ={i: fo(Xi) >0}, la = {i : fo(X;) <O0}. For this first layer we
define a set of leaves L = {l,r}.

Then each new layer is built recursively as follows.

e For every leaf | € L we train new feature parameters #, but
using only a subset of the original data set defined by indices
in [.
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e Then wesplit [ toly ={i:i€l,fo(X;) >0} andlo ={i:i¢€
L, fo(X:) < 0}

e If |I;] > 0 and |l2] > 0 (the split is non-trivial), then the new
leaves set is defined as L U {l;1,lj2} \ [}, otherwise it does not
change.

o If 1] =0 or |lo] =0, but [{c:3i € lst.y; =c}| > 1 (this
denotes that the leaf [ contains objects of at least two different
classes), that means that the features are not flexible enough to
separate the data set and we increase its flexibility by decreasing
the value of A (for example, multiply it by %)

We add layers with the above procedure until the maximum num-
ber of iterations is reached. If at some iteration step [{c : i €
Ist.y; = c¢}| = 1 for every I € L, then the training data set is
perfectly separated and the algorithm terminates.

The classification of new image X with TICT is achieved in ex-
actly the same way as with decision trees: we go from the root node
following the splits to the leaves, and then return the majority class of
the objects in this leaf. The proposed algorithm is similar to oblique
decision trees | |. However, unlike oblique decision trees, the
features in our case do not form a linear combination of all the pixel
intensities, and therefore TICT does not belong to this category. We
use TICT for comparison, but the final algorithm uses a modification
of it inspired by Decision Jungles | |.

Transformation-Invariant Convolutional Jungles

There are two main problems with the previous approach:

e first, it easily overfits the data if the number of splits is large
and the sizes of the leaves are small;

e second, the size of TICT grows very fast, causing major effi-
ciency and memory issues (if we add 20 layers, in worst case we
need to train 22! features).
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Figure 4.10: A visualization of TICJ training process. Each node
is represented with feature parameters 6§ and a histogram h of input
object classes (for simplicity we consider three classes here). (a) shows
the root node, for which the whole data set is an input. Using the
learned feature fy — the data set is split in two subsets to serve as
input for two other nodes (b). The algorithm proceeds by splitting the
data set until the maximum number width M is achieved (c). Then
some of the data subsets can be joined together with a histogram
clustering technique (d).
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In order to overcome both of these issues, we propose TICJ algo-
rithm based on the modification of the Decision Jungles algorithm.
The idea of TICJ is very simple: after adding one layer, we perform
the clustering of leaves in L and join similar leaves together where the
similarity of leaves is measured as the similarity of the histograms of
the classes present in a leaf. We merge leaves only if the leaves set size
|L| is greater than some constant M. We also generate a new layer
in a feed-forward manner, so after joining the leafs, we do not retrain
the features. That allows us to spend up to two times less training
time, and produces very similar results to a two-step procedure in our
experiments. The scheme of the algorithm is sketched in figure 4.10.

The second extension of the original decision jungles paper is how
we perform clustering. The paper | | suggests two clustering
technique: a global and a randomized greedy, and claims that a global
clustering technique performs worse. We experienced very similar
behaviour and discovered a possible reason behind that: very often
global clustering joins the leafs that were separated just before with
the feature learned. For example, quite a common case is that 6
learned in one layer splits [ into [; and I3, and then the clustering
algorithm groups /1 and Iy again together. That means that in the
next layer 6 will be trained again with the same data, and with high
probability will yield the same results, getting the algorithm stuck in
this loop.

To overcome this issue, we propose to forbid the clusters con-
sisting of two leaves that were just split. That can be easily im-
plemented by just setting the distance of these leaves to be infinite
before executing the clustering algorithm. Formally we define the dis-
tance between leafs D(l;,[;) as either +o0 if [; and [; originate from
one set ly, or D(l;,l;) = 3 (Dxr(hj||hi) + Dir(hil|h;)) otherwise.
Here Dy (-||-) stands for Kullback-Leibler divergence | |, and
hy =[{ielj:yi=1},...,|{t €j : y; = K}|] — a histogram repre-
sentation of the leaf classes present in a leaf [;. Then we apply ag-
glomerative clustering | | with the defined metric to get clusters
1,..., M and redefine the leaf set to be L = {Uj¢ cluster 10, - - - » Uie cluster M1}
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One can also construct an ensemble of trained jungles. Such an
ensemble may slightly increases the recognition performance in some
cases and reduces the variance of the resulting classifier. This im-
provement is caused by the randomness involved into constructing
every instance of TICJ: classes for separation are taken at random.
One can also use only a subset of objects or a subset of transforma-
tions for TICJ training to further diversify the trained models and
benefit more from averaging their outputs.

Algorithm parameters discussions

In this section we demonstrate how to better understand the param-
eters and how to set them wisely without harming the performance
and the efficiency of the algorithm. There are three main parameters
in the proposed algorithm: (i) a set of transformations @, (ii) the reg-
ularization parameter A considered during feature learning, and (iii)
the maximum TICJ width M.

The maximum number of iterations is also a hyperparameter, but
it is less important as it does not need to be specified in advance: if
the performance on the validation data set is still improving, one can
always add more layers.

® — a set of transformations — depends on the task being solved and
almost always can be selected in advance, as discussed in section 4.3.
We also want to note that ® partly serves the regularization purpose.
When the size of the set ® increases, then the learned feature fy is
expected to have less degrees of freedom. Therefore one should be
careful when selecting a large set ® as it can prevent flexible features
from being learned.

This model selection choice is, however, not an issue when we de-
termine the regularization parameter A. One can start with a large
value of A to learn very smooth kernels corresponding to low-frequency
features. As we discuss in section 4.3.2, if learning 6 gives only triv-
ial splits, we decrease the value of A\ (usually just multiply it by %)
and start to discover also high-frequency features. That gradually
increases the complexity of the features as we go down the layers
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hierarchy.

The maximum width of the jungle M is the only remaining pa-
rameter that defines the topology of TICJ. This parameter also signif-
icantly contributes to the control of the bias-variance trade-off: if it is
small, it prevents overfitting, but the algorithm usually appears to be
less flexible. If it is chosen too large then TICJ adapts to fluctuations.
We propose to use the following heuristic:

e start with a small value of M (we usually take M = 3K, where
K is the number of classes),

e train the algorithm by adding more layers and observe the val-
idation error;

e if the validation error stops decreasing, enlarge M without re-
training the whole TICJ and continue adding layers (just the
new layers would be wider).

This process can be repeated until the algorithm starts overfitting,
which is usually indicated by the increase in a validation set error.

4.3.3 Experiments

In this section we present the experimental results on two publicly
available computer vision data sets: (i) the Yale face recognition
data set | | and (ii) the Neuronal structures segmentation data
set | |. Both data sets include large intra class variabilities
(see examples in figure 4.11), but also contain some transformation-
invariances, which we exploit with the proposed algorithm.

In the face recognition benchmark we achieve slightly better re-
sults, than the state of the art algorithms: 0.3% increase in accuracy
(here we consider only the methods that use no additional training
data).

In the structure segmentation benchmark, we exactly match the
performance of the current state of the art algorithm, which are Con-
volutional Neural Networks | |, but we obtain these results
orders of magnitudes faster.
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Figure 4.11: Example cropped images from Yale face recognition data
set (top row) and example patches from Neuronal structures segmen-
tation data set (bottom row). The Yale data set includes large varia-
tions in pose, facial expression, illumination and sometimes includes
obstacles (glasses). Patches of neuronal tissue sometimes clearly indi-
cate membranes (the last two images), but in many cases the images
display very unclear and blurred structures that are hard to detect
even for a trained human expert.

Face recognition

The original Yale face recognition data set contains 165 grayscale
images of 15 individuals (and therefore has K = 15 classes). There
are 11 images per subject, one per different facial expression (normal,
happy, sad, sleepy, surprised, and wink) or configuration (left-light,
center-light, right-light, with /without glasses).

We follow the most commonly adopted experimental setup [CHH 07,
HVDO7, SCO8| and average the results over 50 random splits into
training and test sets. Splits are performed independently for all im-
ages of a particular person. For training we select five images per
person, and use the other six for testing. We also use the cropped
version of the data set [C'HH"07] since most publications with com-
peting methods follow this protocol.

We run both TICT and TICJ with the set ® of transformations
that includes small shifts (up to two pixels in each side) and illumi-
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Figure 4.12: An example implementation of a transformation that
changes illumination. The original image is per-pixel divided by a
blurred version of itself. This makes some originally dark regions a
little lighter.

nation changes. We implement illumination changes simply through
dividing the original image by the very blurred one (see figure 4.12
for example). For blurring we use Gaussian kernels with width 8 and
16. Other parameters are selected as described in section 4.3.2.

As baselines we select two state of the art methods that achieve
the best results for this experimental setup: spatially smooth sub-
space learning [C'HH " 07] and orthogonal rank one tensor projections
[HVDO7]. The results are presented in table below. The table also
includes neural networks on pretrained features [SC08| that performs
better than the proposed TICJ. However, this method uses additional
data for the feature learning process, and therefore a comparison is
questionable. Apart from this method, TICJ achieves better results
than state of the art methods using no additional data. TICT overfits
the data and performs significantly worse.

Method Error (%)
Cai et al. [CHHT07] 18.3
Cai et al. [CHH "07] (updated) 14.7
Hua et al. [HVDO7] 13.2
Shan et al. [SCOg] 8.2
TICT (ours) 18.4
TICJ (® = @) (ours) 16
TICJ (ours) 12.9

107



CHAPTER 4. TRANSFORMATION-INVARIANCE

Neuronal structure segmentation

We consider neuronal structure segmentation data set as an example
of a medical imaging data set with intrinsic transformation-invariance.
The task is to segment inner are of neurons from the membranes
separating different neurons. From the neurological experts we know,
that membrane appearance does not depend on the orientation of the
membrane and, therefore, we can safely include 360° rotations in the
set of transformations ®. We sample rotations at every 15 degrees,
resulting in 24 transformations considered. Further details of the data
set are described in section 2.2.2.

To address segmentation tasks, we employ the commonly used
patch classification strategy: instead of X; being an image in classifi-
cation task, we consider X; to be a patch around pixel i, and y; to be
the corresponding pixel class (segment index). Then, the algorithm
should return the class estimate for every pixel based on the appear-
ance of the surrounding w X w pixel area. The patch size w is an
application dependent parameter that we select by cross-validation.

We perform training on 50000 pixel patches X selected at random
from the training images together with the labels of the corresponding
pixel y. We select the patch size to be 31 x 31 pixels (w = 31).

As baselines, we select the methods that won the first and the
second place in the challenge [cha]. The first method is an ensem-
ble of convolutional neural networks (CNN) | |. The second
method is a random forest per-pixel classifier with a huge number of
features and cross-image priors (RF) (introduced in chapter 2). We
also compare with the previously proposed CDT, as they outperform
RF.

Method 1-F-score (%) | Training time
RF (chapter 2) 7.9 1 hour
CDT (section 4.2) 6.8 8 hours (CPU)
CNN | | 6.0 7 days (GPU)
TICT (ours) 6.7 2.5 hours (CPU)
TICJ (ours) 6.0 3 hours (CPU)
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The results of the experiment are presented in table above: TICJ
matches the state of the art results of Convolutional Neural Networks
and consistently outperforms other methods. It is also very important
to notice the highly significant speedup during training, where the
training time is orders of magnitude smaller for TICJ then for CNN.
CNN are reported to train for about one week on a GPU cluster,
and the estimated time is one year on a single CPU. TICJ, on the
contrary, can be trained in one CPU within three hours.

4.4 Transformation-Invariant Pooling

As we show in a previous section, TICJ effectively exploits transformation-
invariance and, thereby, achieves results similar to Convolutional Neu-
ral Networks for some detection problems. However, its greedy man-
ner can prevent it from performing as a state of the art algorithm for
the majority of problems. While focusing on training speed can be
very important for special problems, it can be unnecessary for others.

In this section we show how to apply the ideas of TICJ to Convolu-
tional Neural Networks framework. The combination of the two tech-
niques results in better accuracy and generalization capacity, while
sacrificing some of the training speed of TICJ.

4.4.1 Transformation-invariance in deep learning

Recent advances in deep learning produced impressive results for var-
ious applications of machine learning and computer vision in different
fields. These advances are largely attributed to the expressiveness of
deep neural networks with many parameters, that are effectively able
to approximate any decision function in the data space | |.
While this is true for all the neural network architectures with
many layers and with sufficient number of parameters, the most im-
pressive results are being achieved in the fields where deep archi-
tectures heavily rely on internal structure of the input data, such
as speech recognition, natural language processing and image recog-
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nition | |. For example, convolutional neural networks | |
learn kernels to be applied on images or signals reflecting the spatial or
temporal dependencies between the neighbouring pixels or moments
in time. This structural information serves for internal regularization
through weight sharing in convolutional layers | |. When com-
bined with the expressiveness of multilayer neural networks, it enables
to learn very rich feature representation of input data with little to
no preprocessing.

Incorporating structural information permits to work with the in-
ner dependencies in the representation of the data, but only few works
have addressed the possible use of other structural prior information
known about the data. For example, many data sets in computer vi-
sion contain some nuisance variations, such as rotations, shifts, scale
changes, illumination variations, etc. These variations are in many
cases known in advance from experts collecting the data and one can
significantly improve the performance when being considered during
training.

The effect is even more explicit when dealing with domain-specific
problems. For example, in many medical imaging data sets, the rota-
tion can be irrelevant due to the symmetric nature of some biological
structures. At the same time, the scale is fixed during the imaging
process and should not be considered as a nuisance factor. Moreover
scale-invariance can even harm the performance if object size is at
least somehow informative, for example, in case of classifying healthy
cells from cancer cells | |. We describe one example in detail
in section 4.4.4.

The state of the art approach to deal with these variations and
the most popular one in deep learning is data augmentation | ]
— a powerful technique that transforms the data point according to
some predefined rules and uses it as a separate training sample dur-
ing the learning procedure. The most common transformations being
used in general computer vision are rotations, scale changes and ran-
dom crops. This approach works especially good when applied with
deep learning algorithms, because the models in deep learning are
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extremely flexible and are able to learn the representation for the
original sample and for the transformed ones and therefore are able
to generalize also to the variations of the unseen data points | |.
This approach, however, has some limitations listed below.

e The algorithm still needs to learn feature representations sepa-
rately for different variations of the original data. For example,
if a neural network learns edge-detecting features | | un-
der rotation-invariance setting, it still needs to learn separately
vertical and horizontal edge detectors as separate paths of neu-
ron activations.

e Some transformations of the data can actually result in the al-
gorithm learning from noise samples or wrong labels. For exam-
ple, random crops applied to the input image can capture only
a non-representative part of the object in the image, or can
fully cut the object out, in which case the algorithm can either
overfit to the surrounding or learn from a completely useless
representation.

e The more variations are considered in the data, the more flex-
ible the model needs to be to capture all the variations in the
data. This results in more data required, longer training times,
less control over the model complexity and larger potential for
overfitting.

On the other hand we use the approach inspired by the max-
pooling operator | | and by multiple-instance learning | ]
to formulate convolutional neural network features to be transformation-
invariant. We take the path of neuron activations in the network and
feed it, in a similar manner to augmentation, with the original im-
age and its transformed versions (input instances). But instead of
treating all the instances as independent samples, we accumulate all
of the responses and take the maximum of them (TI-POOLING op-
erator). Because of the maximum, the response is independent from
the variations and results in transformation-invariant features that are
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further propagated through the network. At the same time this allows
for more efficient data usage as it learns from only one instance, that
already gives maximum response. We call these instances "canonical"
and describe in more details in 4.4.3.

This topology is implemented as parallel siamese network |
layers with shared weights and with inputs corresponding to differ-
ent transformations, described in detail in section 4.4.3 and sketched
in figure 4.13. We provide theoretical justification on why features
learned in this way are transformation-invariant and elaborate on fur-
ther properties of TI-POOLING in section 4.4.3.

Using TI-POOLING permits to learn smaller number of network
parameters than when using data augmentation, and lacks a draw-
back of some data-points missing relevant information after the ap-
plied transformation: it only uses the most representative instance
for learning and omits the augmentations that are not useful. We re-
view other approaches dealing with nuisance data variations in section
4.4.2.

We evaluate our approach and demonstrate it’s properties on three
different data sets. The first two are variations of the original MNIST
data set | |, where we significantly outperform the state of the
art approaches (for the first variation) or match the current state of
the art performance with significantly faster training (on the second
variation). The third data set is a real-world biomedical segmenta-~
tion data set with explicit rotation-invariance. On this benchmark we
show that incorporating TI-POOLING operator increases the perfor-
mance over the baselines with similar number of parameters, and also
demonstrate the property of TI-POOLING to find canonical transfor-
mations of the input for more efficient data usage.

4.4.2 Related work

There exist many transformation-invariant features, such as SIFT
| |, line filter transform | | and rotational bag of visual words
| |. We discuss most of these features in section 4.3.1, and fo-
cus in this section mostly on comparison with previously introduced
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TICJ, transformation-invariant deep learning architectures, and mul-
tiple instance learning.

Transformation-Invariant Convolutional Jungle (TICJ), introduced
in section 4.3, while being fast, have the following limitations: (i)
greediness in the feature learning process (only one kernel is learned
at a time) and (ii) relatively low expressiveness of the combining ma-
chine learning algorithm. The algorithms that are usually able to
overcome both of these limitations are neural networks.

Deep neural networks

Convolutional deep neural networks [ | are known to learn very
expressive features in an adaptive manner depending on the task.
Moreover in many cases they resemble some transformation-invariant
properties, as discussed in section 4.3.1. Here we will focus specifi-
cally on two relevant approaches: such as multi-column deep neural
networks | | and spatial transformer networks | |.

The idea behind multi-column networks is to train different models
with the same topology but using different data sets: the original data
set, and the transformed data sets (one separate model is trained for
every transformation considered). Then an average of the outputs of
individual models is taken to form the final solution.

Spatial transformer networks (STN) follow a completely different
idea of looking for a canonical appearance of the input data point.
They introduce a new layer to the topology of the network, that
transforms the input according to the rules of parametrized class of
transformations. The key feature of this approach is that it learns the
transformation parameters from the data itself without any additional
supervision, except of a defined class of transformations.

The TI-POOLING approach in many ways has very similar prop-
erties to STN. As we demonstrate in section 4.4.3, our method also
finds a canonical position of the input image. But instead of defin-
ing a parametrized class of transformations, we define a general set
of transformations to be considered, not limited to any parametrized
functions. In section 4.4.4 we show that we achieve similar to STN
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results on a benchmark introduced by its authors | |, but with
simpler model and with shorter training time.

Multiple instance learning

Multi-column networks with model averaging described above fall into
a category of more general techniques called "multiple instance learn-
ing" (MIL) | |. The area of applications of MIL is very broad,
and it can also be applied to train the algorithms invariant to some
variations defined as a set of transformations ®.

Assume that we are given an algorithm A with some input x
and scalar (for simplicity) output A(x). Then the multiple-instance
learning approach suggests that the algorithm B(x) will be in many
cases transformation-invariant if defined as

B(z) = max A(¢(x))

ped

Instead of a maximum, many different operators can be used (such as
averaging), but maximum proves to work best in most applications,
so we also focus on it in this work.

While MIL algorithm as a whole can indeed be transformation-
invariant, individual features are not required to be transformation-
invariant. In a way, MIL tries to assemble a transformation-invariant
algorithm from arbitrary features, which can sometimes limit both
performance and accuracy. The main difference between our ap-
proach and MIL is that we propose to learn individual features to be
transformation-invariant, and not the algorithm as a whole. Each of
the features can then be learned in a way that is most optimal specif-
ically for this feature, allowing different features to rely on different
canonical instances and make the most of feature inter-dependencies.
We describe this relation in more details in section 4.4.3. Overall
our method significantly outperforms the standard MIL models as we
show further in section 4.4.4.

Other approaches that are based on the ideas similar to the one
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presented in this paper are rolling feature maps ' and multi-view net-
works | |. The former explores a pooling over a set of trans-
formations, but does not guarantee the transformation-invariance of
the features learned. And the latter solves a problem of view invari-
ance, not invariance to an expert-defined set of transformations.

4.4.3 Method description
Convolutional neural networks notation

Convolutional neural networks are usually represented as a sequence
of convolutional and subsampling layers with one or more fully-connected
layers before the outputs. In this section we for simplicity assume that
the input image is two-dimensional (i.e. incorporate no colour chan-
nels), but the approach generalizes also for colored images. We also
omit the explicit notation for activation functions, assuming activa-
tions to be incorporated in the specific form of an operator O defined
below.

Assume that each neuron performs an operation on the input x,
that we will refer to as an operator O(x,0). It can be either a con-
volution operator, in which case 6 is a vectorized representation of
a convolutional kernel. Or it can be a subsampling operator, which
is usually non-parametric, and has no parameters . The size of the
output matrix O(z,0) in each dimension is smaller than the size of
x by the size of the kernel in case of a convolution operator, or two
times smaller than the input = in case of a subsampling operator.

We refer to these operators applied in layer [ € {1,...,L} using
superscript [ on the parameters 8 and we refer to a specific index of
the operator within a layer as a subscript. For example, convolutional
operations applied in the first layer of the network can be referred as
O(z,67),...,0(z,0) ), where ny is the number of neurons in layer 1
(we define all the constants in table 4.1). The output of the neuron
i in layer 2 is recursively defined as O([O(z,67),...,0(z,0})],6?),
1= 1, ..o, N9

"http://benanne.github.io/2015/03 /17 /plankton.html
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Figure 4.13: Network topology and pipeline description. First, input
image z (a) is transformed according to the considered set of trans-
formations ® to obtain a set of new image instances ¢(z), ¢ € ¢ (b).
For every transformed image, a parallel instance of partial siamese
network is initialized, consisting only of convolutional and subsam-
pling layers (two copies are shown in the top and in the bottom of the
figure). Every instance is then passed through a sequence of convolu-
tional (c, e) and subsampling layers (d), until the vector of scalars is
not achieved (e). This vector of scalars is composed of image features
fr(é(x)) learned by the network. Then TI-POOLING (element-wise
maximum) (g) is applied on the feature vectors to obtain a vector of
transformation-invariant features gx(z) (h). This vector then serves
as an input to a fully-connected layer (i), possibly with dropout, and
further propagates to the network output (j). Because of the weight-
sharing between parallel siamese layers, the actual model requires the
same amount of memory as just one convolutional neural network.
TI-POOLING ensures that the actual training of each features param-
eters is performed on the most representative instance ¢(z).
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To simplify the notation and omit all the nested formulas, we will
assume that the input to layer [ is known, replacing this input with
a - notation. Using this notation, the output to the neuron ¢ in layer
[ is constructed as follows: O(-,6!).

We refer to feature fi of the input image x as an output of a

neuron k in a layer that contains only scalar values, i.e. layer [ such
that O(-,0!) € R*1.

fr(z) =0 (-,92) , where [ : O(-,0%) € RI¥L. (4.13)

On top of these features fi(z), fully-connected layers are usu-
ally stacked with some intermediate activation functions, and possi-
bly with dropout masks | | during learning. These are not
directly relevant for this paper and therefore not described in detail.

Network topology

Features f(z), introduced before, are very powerful when all the pa-
rameters 6 are properly trained. They, however, lack a very important
property of incorporating any prior information, such as invariance to
some known nuisance variations in the data. We fix this property with
a relatively easy trick, inspired by multiple-instance learning (MIL)
and max-pooling operator.

Assume that, given a set of possible transformations ®, we want
to construct new features gi(z) in such a way that their output is
independent from the known in advance nuisance variations of the
image x. We propose to formulate these features in the following
manner:

gr(x) = max fi(¢(x)) (4.14)

ocd

We refer to this max-pooling over transformations as to transformation-
invariant pooling or TI-POOLING. Because of the maximum being
applied, every learned feature becomes less dependent on the vari-
ations being considered. Moreover, for some sets ® we achieve full
transformation-invariance, as we theoretically show in section 4.4.3.
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As mentioned before and as we show in section 4.4.3, TI-POOLING
ensures that we use the most optimal instance ¢(x) for learning, and
comparing to MIL models we allow every feature k to find its own
optimal transformation ¢ of the input x: ¢ = argmaxyece fi(d(z)).

The topology of the proposed model is also briefly sketched and
described in figure 4.13.

Back-propagation. Let Vfi(x) be the gradient of the feature
fr(z) defined in equations 4.13 with respect to the outputs O(-, 9;_1)
of the previous layer. This gradient is standard for convolutional
neural networks and we do not discuss in detail how to compute it.
From this gradient we can easily formulate the gradient 494(@) of the

dfy. ()
transformation-invariant feature gx(z) in the following manner:
dgi(z)
=V x)), where ¢ = arg max T
e = V(). whete 6 = argmax f(0(a)

The gradient of the neurons of the following fully-connected layer
with respect to the output of gp(x) stays exactly the same as for
conventional network topology. Therefore, we have all the building
blocks for a back-propagation parameter optimization | |, which
concludes the description of TI-POOLING and of the proposed topol-

ogy.

Theory and properties

Theoretical transformation-invariance. Lemma 3 is an adapta-
tion of the lemma 2 from the previous section, formulates the condi-
tions on the set ® for which the features formulated in equation 4.14
are indeed transformation-invariant, i.e. give exactly the same out-
put for both the original image x and every considered transformation

P(x), ¢ € D.

Lemma 3. Let the function gi(-) be defined as a maximum over trans-
formations ¢ € ® of some other function fi(-). This function gg(-) is
transformation-invariant if the set ® of all possible transformations
forms a group, i.e. satisfies the axioms of closure, associativity, in-
vertibility and identity.
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The proof essentially repeats the proof of lemma 2.

The statement of the lemma is satisfied for many computer vi-
sion tasks: simple transformations, such as rotations or non-linear
distortions, as well as their compositions form a group. One common
example that does not satisfy this property is local shifts (jittering).
For example, if one wants to consider only one pixel shifts, then the
closure axiom of the group does not hold: one pixel shift applied twice
gives two-pixel shift, which is not in a transformation set.

Canonical position identification. From a practical point of
view, however, the algorithm achieves approximate transformation-
invariance even for local transformations. If the set ® does not form
a group, we often observe that the algorithm tries to find a canonical
appearance of the image, and then maps a new transformed image to
one of the canonical modes. This standardization allows us to preserve
transformation-invariance in most practical cases with no limitations
on ®. Figure 4.14 shows some examples of neuronal structures ori-
ented in the same manner to a canonical orientation for one of the
features.

The canonical samples are useful for most problems as they permit
for better use of input images. For example, learning discriminative
features for every orientation of the image is of course possible with
large and deep enough neural network. But assume that now features
need to be learned only for canonical orientation (e.g. for membranes
oriented in all the same direction).

First, for this, much simpler problem, smaller models can be used.
Second, the algorithm sees many more examples of canonical vertical
edges and therefore can better generalize from them. This brings the
next important property of the algorithm.

Improved performance and convergence. Because of more
representative examples being used for network training, we observe
better performance and convergence rate, when compared with simple
data augmentation. Figure 4.15 shows that the larger the transfor-
mation set ® — the better usually the results achieved. This is most
probably due to the fact that fewer canonical positions needs to be
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ﬂ ﬂ ﬁ

Figure 4.14: First and third rows show the input patches from neu-
ronal segmentation data set. For this data set we consider ® to be a
set of rotations. We then apply a learned model to these patches x
and record the angle at which the maximum is achieved for specific
feature gi(x). Then we show the same patches rotated by this angle
as shown in rows two and four. One could notice that in most cases
the membranes (slightly darker elongated structures) are oriented in
approximately the same direction. This means that the algorithm
considers this orientation to be canonical for this specific feature and
rotates new images to appear similarly.
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Figure 4.15: Validation error plot for the neuronal segmentation data
set. Depending on how many angles we sample to form a transforma-
tion set ® (from one, which is equivalent to data augmentation, up
to 24) — the results improve significantly.
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handled by the learning algorithm.

What TI-POOLING is doing to achieve that can be formulated as
an exhaustive search over the transformed instances for an instance
better corresponding to the current response of the feature. Then only
this instance is used to even better improve the performance of the
feature. On the other hand, we do not limit all the features to use the
same canonical appearance, allowing features to better explore inter-
dependencies between the outputs of network layers. We elaborate
more on the results in section 4.4.4.

Any type of transformations. Another property of the tech-
nique, that is worth mentioning, is that it can work with a set of
almost any arbitrary transformations. Many works, such as spatial
transformer networks | |, focus on only limited class of trans-
formations. Those classes can be very rich, e.g. include all the possible
affine transformations or projections. But still, they need to be differ-
entiable with respect to some defined parameters of the transforma-
tion, and, depending on the problem at hand, this can be not enough.
TI-POOLING, on the contrary, does not rely on differentiability or on
any properties of bijective functions or even on the parametrization it-
self. Examples of common transformations that can be used with our
method, and not with | | are reflections, most morphological
operations and non-linear distortions.

Implementation details

We use Torch7 framework for model formulation and training | |.
The easiest way to formulate a proposed model is to use parallel net-
work notation with shared weights as described in figure 4.13. The
whole model definition requires just few additional lines of code. An
example in pseudo-lua code is provided below. Here nPhi is a size of
the set .

— define first siamese layers
siamese = Sequential ()
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— clone and share weights
parallel = Parallel (1, 3)
for phi = 1, nPhi do

clone = siamese:clone ()
parallel :add(clone)
clone:share(siamese, ’weight’ 6 'bias’,

"gradWeight ’ |, "gradBias ")
end
— formulate a full model
model = Sequential ()
model:add (parallel)
model :add (SpatialMaxPooling (nPhi,1,1))
— add fully—connected layers,
— dropout and output layer

The only other modification is to the data: we increase the di-
mension of the input data tensor by one and stack input instances
o(z), ¢ € P across the new dimension.

Computational complexity. It may seem like an exhaustive
search in the space of possible transformations ® significantly in-
creases computational complexity of the pipeline. Indeed, instead of
processing one image at a time, we forward-pass |®| images through
almost the whole network. We can speed it up by sampling from the
space of transformations, but in practice, even searching the full space
appears to be more efficient than just data augmentation, because of
the following reasons:

e Only partial forward pass is done multiple times for the same
image, forward-pass through fully-connected layers and back-
propagation are exactly the same computationally as for a stan-
dard convolutional neural network with the same number of pa-
rameters.

e Comparing to the data augmentation approach, we make use of
every image and it’s augmented versions in one pass. Standard
convolutional neural network instead makes one pass for every
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augmented sample, which in the end results in the number of
passes equal to the number of augmentated samples to process
one image. Due to the previous point, we actually perform it
more than two times faster than before.

e Because we make use of the canonical appearance of the image,
the proposed pipeline actually trains more efficiently than the
standard neural network, and usually requires smaller number
of overall parameters.

4.4.4 Experiments

In this section we present the experimental results on three com-
puter vision data sets. The first two data sets are different variations

of MNIST data set | | designed to test artificially-introduced
variations in the data. The third one is a neuronal structures segmen-
tation data set | |, that demonstrates a real-world example of

rotation invariance.

Rotated MNIST

Original MNIST data set | | is a very typical toy data set
to check the performance of new computer vision algorithms modifi-
cations. Two variations of MNIST exist to test the performance of
different algorithms that are designed to be invariant to some specific
variations, such as rotations.

For both the data sets we use the same topology, but slightly
different sets ®. The topology is described in table 4.1. We perform
the training using tuning-free convergent adadelta algorithm | ]
with the batch size equal to 128 and dropout | | for fully-
connected layers.

mnist-rot-12k data set. The most commonly used variation
of MNIST that is used for validating rotation-invariant algorithms is
mnist-rot | |. It consists of images from the original MNIST,
rotated by a random angle from 0 to 27 (full circle). This data set
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Layer Parameters & channel size
input size: 32x32

convolution | kernel: 3x3, channel: 40
relu

max pooling | kernel: 2x2, stride: 2
convolution | kernel: 3x3, channel: 80
relu
max pooling | kernel: 2x2, stride: 2
convolution | kernel: 3x3, channel: 160

relu

max pooling | kernel: 2x2, stride: 2
linear channel: 5120

relu

TI-POOLING | transformations:
dropout rate: 0.5

linear channel: 10

softmax

Table 4.1: The topology of the network in the experiments.
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’ Method ‘ Error, % ‘
ScatNet-2 | | 7.48
PCANet-2 | || 737
TIRBM [SL12] 4.2
TI-POOLING (ours) 2.2

Table 4.2: Results on mnist-rot-12k data set.

contains 12000 training images, which is significantly smaller, than in
the original data set, and 50000 test samples.

For this data set we include a TI POOLING step over ® containing
24 rotations sampled uniformly from 0 to 2.

We train this network on a single GPU for 1200 epochs and com-
pare the achieved test error with the best results published for this
data set. The best approach by | | employs restricted boltzmann
machines and achieves 4.2% error, while we achieve 2.2% — the results
almost two times better in terms of classification error. The final er-
rors for the proposed and the state of the art results are present in
the table 4.2. It can be seen that using TI-POOLING indeed leads
to significant improvements with no significant effort of optimising
topology and just by better exploiting the variations in the data.

Half-rotated MINIST data set. The second data set we con-
sider is another rotational variation of MNIST data set, but with much
more training images. This data set was introduced in | |.
There are two reasons why the authors decided to advance further
from the original mnist-rot-12k. First, mnist-rot-12k is very small in
size (five times less than training set in MNIST data set). And second,
it has somewhat artificial limitation of images being rotated full cir-
cle. So they proposed to take full MNIST data set, use random angle
in the range [—7, 5] (half the circle) and use the input images rotated
by this angle as training samples. This data generation process makes
the problem a little easier, but closer to real-world scenarios.

As discussed in section 4.4.2; the authors of spatial transformer
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’ Method ‘ Error, % ‘
FCN 2.1
CNN 1.2
STN (general) 0.8
STN (affine) 0.7
TI-POOLING (ours) 0.8

Table 4.3: Results on half-rotated MNIST data set.

networks | | propose an elegant way of optimising the trans-
formation of the image while learning also the canonical orientation.
Here we show that for some classes of transformations, we achieve
comparable results with simpler model and shorter training time.

For this problem formulate a set of transformations ® as a set of
angles sampled uniformly from half a circle, to match the data set
formulation, overall 13 angles. With this relatively simple model, we
converge to the results of 0.8% error within 360 epochs, while STN
was trained for 1280 epochs. Moreover, using TI POOLING does not
require grid sampling and therefore each individual iteration is faster.
With this we still match the performance of the most general STN
model defined for a class of projection transformations. For more
narrow class of transformations selected manually (affine transforma-
tions), our results are slightly worse (by 0.1%). However, we did not
optimise with respect to the transformation classes, and therefore the
comparison is not fully fair in this case. Table 4.3 shows further com-
parison with STN and other related baselines on this data set. Base-
line fully-connected (FCN) and standard convolutional (CNN) neural
networks are defined in | | and tuned to have approximately
the same number of parameters as the baseline STN.

Neuronal structures segmentation

From the neurological experts we know, that membrane appearance
does not depend on the orientation of the membrane, and therefore
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’ Method ‘ Error, % ‘
MIL over CNN | | 8.9
CNN with augmentation | | 8.1
TI-POOLING - dropout 7.4
TI-POOLING + dropout 7.0

Table 4.4: Results on neuronal segmentation data set.

we can safely include [0, 27] rotations in the set of transformations ®.
We sample rotations every 15 degrees, resulting in 24 transformations
considered.

Because this is a segmentation task, we extract patches around a
pixel and classify those patches (here label of the patch is the label of
the central pixel of the patch). We perform training on all the avail-
able pixel patches (balanced between classes). The patch is decided
to be square and has the size of 46 pixel, but after the rotation we
crop the patch, so the actual input to the network is a 32 x 32 patch.
Some examples of the patches are present in figure 4.14.

For every algorithm we run for this data set, we select the same
network topology, in order to better evaluate the improvement of the
proposed TI-POOLING operator for rotation-invariant feature learn-
ing without incorporating any other effects such as model size. As
our baselines, we select the following two algorithms, that are closely
related to the proposed technique as discussed in sections 4.4.1 and
4.4.2:

e standard convolutional neural network with data augmentation,
that is able ideally to learn features expressive enough to handle
rotations in the data;

e multiple instance learning of convolutional neural networks, that
is able to learn a transformation-invariant algorithm for a given
set of transformations, but not the features.

For all the underlying networks we select the same topology as
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described in table 4.1, except of TI-POOLING and the number of out-
puts (two classes for this data set). We also report the results with
and without dropout, as discussed later.

Table 4.4 shows the pixel error achieved by all the algorithms after
16 epochs. For standard convolutional neural network with augmen-
tation we record the results after 16 x 24 = 384 epochs, so that the
number of images "seen" by the algorithm is the same as in other algo-
rithms (because for the proposed approach and for the MIL modifica-
tion, we take the maximum over all the 24 rotations in one iteration).
We also run MIL modification with no dropout, and compare the re-
sults with the version of our algorithm trained with no dropout. For
both baselines we see the significant improvement for the same topol-
ogy. From this we can conclude that the proposed TI-POOLING is
indeed very helpful for real-world problems with nuisance variations.

4.5 Contributions

Invariance to different types of transformations is required in many
domains of machine learning and computer vision. The prior knowl-
edge about nuisance transformations that are reflected in visual data
sets can be incorporated into a learning process to achieve better
accuracy and higher generalization capacity.

In this chapter we propose three novel methods, applicable to a
wide range of computer vision problems. We start with general meth-
ods for feature learning and segmentation, then building on top of
them method that is able to include the information on transformation-
invariance, and finally, we generalize it to the most complex and flex-
ible models available.

The first method we introduce is CDT (Convolutional Decision
Trees): a general purpose binary segmentation algorithm that repre-
sent every feature as a convolution kernel and learns its parameters
by maximizing the regularized information gain. These features are
then combined efficiently in an oblique decision tree.

e The key advantage of the proposed algorithm is its run-time;
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it trains several orders of magnitude faster than regular CNNs
which makes it possible to learn features without access to spe-
cial hardware.

e A very nice properties of the method are the interpretability and
robustness achieved by regularizing the derivative of the kernel.

e The method achieves state-of-the-art results on Weizmann Horse
data set. On neuronal segmentation data set it shows the results
slightly inferior to CNNs, but significantly outperforms the best
algorithms with similar training time.

The second method we introduce is TICJ (Transformation-Invariant
Convolutional Jungle) — a novel image classification and segmentation
algorithm based on CDT, but with transformation-invariant features
inspired by a pooling operation.

e To assure that these features are transformation-invariant, we
take the maximum response value of the predicate in every split,
over the transformations considered (see lemma 2). We show
that incorporating transformation-invariance lead to better gen-
eralization.

e Regularization is enforced in TICJ through transformation-invariance
constraints, gradient regularization and through the limitation
on the maximum width of the final TICJ. These design con-
straints render the learned features interpretable and ensure
satisfactory generalization even for small data sets.

e On Yale face recognition data set the method outperforms the
competitors by at least 0.3%, if we consider the algorithms that
do not use additional training data. For neuronal segmenta-
tion data set the method achieves the same F-score as Convolu-
tional Neural Networks approach, but the training only requires
3 hours in a single CPU, comparing to about one week CNN
training on a GPU.
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The third approach that we introduce is the TI-POOLING oper-

ator.

We assemble a set of transformations that should not affect

the algorithm decision and generate multiple instances of the image
according to these transformations. Those instances, instead of be-
ing used for training independently, are passed through initial lay-
ers of the network and through the TI-POOLING operator to form
transformation-invariant features. These features are fully-trainable
using back-propagation, they possess the rich expressiveness of stan-
dard convolutional neural network features, but at the same time they
do not depend on the variations in the data.

Convolutional neural networks with TI-POOLING have some
theoretical guarantees of being transformation-invariant algo-
rithm for variations common in computer vision problems. But
more importantly, they show some convenient practical prop-
erties, e.g. they permit to learn from the most representative
instances, that we call "canonical".

Because of that the networks do not have to learn features sep-
arately for every possible variation of the data from augmented
samples, but instead they learn only features that are relevant
for one appearance of the image, and then they apply the fea-
tures for all the variations.

They also enable better use of the input data to learn these
features: e.g. all the samples including edges participate in
learning transformation-invariant edge detector feature, and no
separate vertical or horizontal edge detector features are needed.

We test the method on three data sets with explicitly defined
variability. In all the experiments we either significantly out-
perform or at least match the performance of baseline state of
the art techniques. Often we also show faster convergence rates
than baselines with smaller yet smarter data-aware models.

The proposed TI-POOLING operator can be used as a separate
neuronal unit for most networks architectures with very little
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effort to incorporate prior knowledge on nuisance factors in the
data. But the range of its applications goes well beyond that,
rendering it possibleEJB commen to incorporate many types of
prior information on the data and opening the opportunities for
more robust expert-driven algorithms in combination with the
powerful expressiveness of deep learning.
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Chapter 5

Conclusion & discussion

5.1 Findings

In this thesis we have investigated how to incorporate different types
of expert knowledge to design and enhance new computer vision al-
gorithms. We show expert knowledge to be beneficial for general
computer vision problems, but even more so for problems in more
specialized fields, like medical imaging.

Three major types of expert knowledge that we consider include
information on:

e data peculiarities and details of data acquisition process,

e expected and/or desired properties of the solution,

e how a trained human expert approaches the problem.

Motivated by real-world problems and scenarios, we consider how
these types of expert information can be incorporated in various com-
puter vision pipelines. This research results in the development of
multiple novel expert-aware approaches. We report on these ap-

proaches by grouping them into three chapters.
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e First, chapter 2 introduces the properties of anisotropic data
and describes how an expert deals with this data. By incorpo-
rating this information, we are able to better resolve ambiguities
in data representation, and consequently better solve membrane
segmentation and image enhancement problems.

e Then, chapter 3 demonstrates how one can less-subjectively
solve the amyloid plaque detection problem with no training
data by incorporating biologically motivated priors. By stating
the expected properties of the solution, we are able to tune the
internal parameters of the algorithm.

e Finally, chapter 4 demonstrates how computer vision algorithms
can benefit from the expert-defined knowledge on nuisance vari-
ations in the data. By introducing transformation-invariance,
we are able to use available data highly efficiently, resulting in
satisfactory accuracy, compact models and efficient training.

Overall, based on these ideas, we introduce multiple novel com-
puter vision and image processing algorithms.

e A neuronal membrane segmentation method that uses dense
correspondences across anisotropic sections.

e SUPERSLICING — an image restoration and enhancement tech-
nique for anisotropic data, that also serves within the proposed
segmentation pipeline.

e A robust and non-subjective pipeline for plaque distribution es-
timation, featuring a feedback-loop for an automated parameter
tuning from biologically motivated priors.

e CDT (Convolutional Decision Trees) — a fast general purpose
binary segmentation algorithm.

e TICJ (Transformation-Invariant Convolutional Jungle) — image
classification and segmentation algorithm based on CDT with
transformation-invariant features.
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e Convolutional Neural Network topology with TI-POOLING op-

erator, that combines the benefits of trainable CNN features
with transformation-invariance.

The following research results compose the core achievements of
this thesis work and are my personal highlights

e SUPERSLICING reconstruction method achieves on average 10%

5.2

better peak signal-to-noise ratio than state of the art tech-
niques. This improvement is achieved by modelling the physics
of anisotropic data acquisition, defined by imaging experts.

The feedback-loop framework renders solutions possible for prob-
lems that are defined in unsupervised or weakly supervised set-
ting. It automatically and non-subjectively tunes algorithm pa-
rameters based purely on biological properties of the solution,
defined by medical experts.

Transformation-invariance, which is incorporated either through
TICJ features or through the TI-POOLING operator, enables
highly efficient learning by exploiting training on canonical sam-
ples. This improvement results in high accuracy and sufficient
generalization capacity, that is achieved with the small and eas-
ily trainable models.

From an application point of view, we develop a state-of-the-
art recognition pipelines for the following two problems: neu-
ronal structure segmentation for Drosophila ventral nerve cord
ssTEM images, and amyloid plaque distribution estimation in
mouse brains. We also demonstrate state of the art results in
various natural image recognition benchmarks, such as: Yale
face, rotated MNIST and Weizmann Horse data sets.

Future work

The most promising directions of work from my point of view include
addressing the limitations of current methods, further generalizing
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the approaches, and enabling highly specialized expert knowledge in-
tegration.

SUPERSLICING. This method currently works with uniformly ac-
cumulated anisotropic data, i.e. data, where a section can be modelled
as an average of hidden subsections. While this is a common case, it
is not the only one. For example, most video cameras keep the shutter
close for some time between frames, which results in computing aver-
age of only a subset of subframes. Another example is different types
of microscopes that capture a section as a weighted sum of subsec-
tions, with weight decreasing with depth. All these cases can be very
beneficial to implement in the current SUPERSLICING framework.

Neuronal segmentation. The proposed algorithms for anisotropic
data segmentation allow us to combine information from neighboring
sections to resolve ambiguities. But in principle, neuronal structures
are 3D shapes, and should not be segmented in 2D. Generalizing the
segmentation approaches to 3D is a very promising direction of work.
One way to do that would be to use higher-order correspondences:
employ not only pairs of sections, but multiple sections at a time.

Amyloid plaque distribution estimation. The current pipeline
is simple and fast, and feedback-loop enables efficient parameter tun-
ing, but ultimately many individual components of this pipeline can
be replaced with better ones. Atlas alignment could be significantly
more accurate with cross-modal registration, and by incorporating
both structural constraints and texture of tissue in different regions.
Filtering can be more biology-aware, for example, analysing the shape
of a connected component, and not only its size. And the feedback-
loop itself can be accelerated by using smarter optimization tech-
niques instead of binary search.

Transformation-invariance. Current implementation of both T1I-
POOLING and TICJ features requires time proportional to the size of
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the set of transformations. While it is comparable with augmenta-
tion in simple cases, considering multiple types of transformations
can lead to exponential growth of time required to compute a fea-
ture. Sampling the space of transformations can be one solution, as
discussed above, but probably more efficient search in space of trans-
formations can be found. For example, feature value is usually highly
non-convex with respect to transformations applied, but it is still
smooth, so Bayesian optimization framework | | can be used to
find the argmax of the feature value.

5.3 Concluding remarks

With the development of more flexible computer vision models, larger
data sets to train these models and faster computations, the field
of computer vision itself is changing. Many natural image recogni-
tion problems, that were considered very challenging before, are now
solved good enough for many practical applications.

Ready-to-use black box solutions for classification, detection and
segmentation problems are now available, that are able to solve many
problems at hand. They only require large enough labeled training
data sets, and some time to be trained, preferably on special hardware.

Unfortunately, this has very limited impact on many more special-
ized problem, where there is still need to develop custom solutions.
Major examples include problems in medical imaging, where both the
data is very different from natural imaging, and also labeling is much
more expensive, as it can only be done by trained experts.

We show in this thesis, how these problems can benefit from mod-
ern computer vision approaches when combined with crucial domain-
specific information, that only domain experts can provide. We con-
sider multiple examples of this fusion, but the idea is applicable well
beyond these examples — basically any computer vision problem can
benefit from expert-aware algorithms, from very narrow and special-
ized fields, such as medical image analysis to fields as broad as natural
image recognition.
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CHAPTER 5. CONCLUSION & DISCUSSION

This direction of research is broad and exciting, and we managed
to only scratch the surface of it. But hopefully, the results achieved
in this thesis will inspire further research. No doubt that many future
breakthroughs in narrow domains of image analysis will be connected
with expert-aware algorithms.
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